带你读《云原生机密计算最佳实践白皮书》——PPML: 端到端隐私保护机器学习解决方案(上)

简介: 带你读《云原生机密计算最佳实践白皮书》——PPML: 端到端隐私保护机器学习解决方案(上)

PPML: 端到端隐私保护机器学习解决方案


项目位置链接

https://github.com/intel-analytics/BigDL

https://github.com/intel-analytics/BigDL/tree/main/ppml


技术自身介绍

领域的问题和挑战

在众多计算应用场景中,大数据分析和人工智能已经成为不可或缺的关键环节。总体而言,数据越多,数据分析的价值越大,ML/DL的模型也会越完善。但囤积和处理海量数据也带来了隐私、安全和监管等风险。隐私保护机器学习(PPML,包含大数据分析和人工智能)有助于化解这些风险,能够在不透露原始数据的前提下,实现数据的有效流动,让使用方利用数据的价值。


对挑战的解决方案BigDL PPML

英特尔至强可扩展处理器为隐私保护机器学习提供了可信硬件执行环境 - 英特尔® SGX和英特尔®TDX。英特

尔基于这些技术打造了端到端的大数据和人工智能隐私计算解决方案BigDL PPML。

BigDL是英特尔开源的统一的人工智能解决方案平台,数据科学家,数据工程师等开发者可以使用BigDL轻

松创建端到端的分布式人工智能应用。BigDL应用英特尔SGX/TDX可信硬件执行环境(Trusted Execution

Environ[1]ment, TEE),并集成了其他软硬件安全措施,构建了一个分布式的隐私保护机器学习(Privacy

Preserving Machine Learning, PPML)平台,能够保护端到端(包括数据输入,数据分析,机器学习,深度

学习等各个阶段)的分布式人工智能应用。


技术介绍

1685077531644.png

1685077548225.png

上图是BigDL PPML预制工作流:

1、用户通过BigDL PPML命令行向Kubernetes提交任务,此操作会创建一个驱动节点

2、BigDL PPML客户端认证驱动节点

3、驱动节点创建更多的工作节点

4、驱动节点认证工作节点

5、驱动节点和工作节点从密钥管理服务获取密钥

6、工作节点读取输入数据并解密

7、工作节点分布式运行大数据,机器学习或者深度学习任务


《云原生机密计算最佳实践白皮书》——07解决方案——PPML: 端到端隐私保护机器学习解决方案(下) https://developer.aliyun.com/article/1230703?groupCode=aliyun_linux

相关实践学习
CentOS 7迁移Anolis OS 7
龙蜥操作系统Anolis OS的体验。Anolis OS 7生态上和依赖管理上保持跟CentOS 7.x兼容,一键式迁移脚本centos2anolis.py。本文为您介绍如何通过AOMS迁移工具实现CentOS 7.x到Anolis OS 7的迁移。
相关文章
|
15天前
|
Kubernetes Cloud Native Ubuntu
庆祝 .NET 9 正式版发布与 Dapr 从 CNCF 毕业:构建高效云原生应用的最佳实践
2024年11月13日,.NET 9 正式版发布,Dapr 从 CNCF 毕业,标志着云原生技术的成熟。本文介绍如何使用 .NET 9 Aspire、Dapr 1.14.4、Kubernetes 1.31.0/Containerd 1.7.14、Ubuntu Server 24.04 LTS 和 Podman 5.3.0-rc3 构建高效、可靠的云原生应用。涵盖环境准备、应用开发、Dapr 集成、容器化和 Kubernetes 部署等内容。
41 5
|
29天前
|
监控 Cloud Native 持续交付
云原生架构下微服务的最佳实践与挑战####
【10月更文挑战第20天】 本文深入探讨了云原生架构在现代软件开发中的应用,特别是针对微服务设计模式的最优实践与面临的主要挑战。通过分析容器化、持续集成/持续部署(CI/CD)、服务网格等关键技术,阐述了如何高效构建、部署及运维微服务系统。同时,文章也指出了在云原生转型过程中常见的难题,如服务间的复杂通信、安全性问题以及监控与可观测性的实现,为开发者和企业提供了宝贵的策略指导和解决方案建议。 ####
46 5
|
28天前
|
Kubernetes Cloud Native 持续交付
云原生架构下的微服务设计原则与最佳实践##
在数字化转型的浪潮中,云原生技术以其高效、灵活和可扩展的特性成为企业IT架构转型的首选。本文深入探讨了云原生架构的核心理念,聚焦于微服务设计的关键原则与实施策略,旨在为开发者提供一套系统性的方法论,以应对复杂多变的业务需求和技术挑战。通过分析真实案例,揭示了如何有效利用容器化、持续集成/持续部署(CI/CD)、服务网格等关键技术,构建高性能、易维护的云原生应用。文章还强调了文化与组织变革在云原生转型过程中的重要性,为企业顺利过渡到云原生时代提供了宝贵的见解。 ##
|
1月前
|
人工智能 Cloud Native 安全
从云原生到 AI 原生,网关的发展趋势和最佳实践
本文整理自阿里云智能集团资深技术专家,云原生产品线中间件负责人谢吉宝(唐三)在云栖大会的精彩分享。讲师深入浅出的分享了软件架构演进过程中,网关所扮演的各类角色,AI 应用的流量新特征对软件架构和网关所提出的新诉求,以及基于阿里自身实践所带来的开源贡献和商业能力。
179 11
|
1月前
|
人工智能 Serverless API
云原生应用开发平台CAP:一站式应用开发及生命周期管理解决方案
阿里云的云应用开发平台CAP(Cloud Application Platform)是一款一站式应用开发及应用生命周期管理平台。它提供丰富的Serverless与AI应用模板、高效的开发者工具链及企业级应用管理功能,帮助开发者快速构建、部署和管理云上应用,大幅提升研发、部署和运维效能。
107 1
|
1月前
|
存储 运维 监控
云原生应用的可观察性:理解、实现与最佳实践
【10月更文挑战第10天】随着云原生技术的发展,可观察性成为确保应用性能和稳定性的重要因素。本文探讨了云原生应用可观察性的概念、实现方法及最佳实践,包括监控、日志记录和分布式追踪的核心组件,以及如何通过选择合适的工具和策略来提升应用的可观察性。
|
6月前
|
机器学习/深度学习 算法 Cloud Native
利用机器学习进行情感分析:从理论到实践云原生技术在现代软件开发中的应用与挑战
【5月更文挑战第31天】本文旨在深入探讨机器学习在情感分析领域的应用。首先,我们将解释什么是情感分析以及为什么它在今天的世界中如此重要。然后,我们将详细介绍几种主要的机器学习算法,包括决策树、随机森林和神经网络,以及它们如何被用于情感分析。最后,我们将通过一个实际的案例研究来展示这些理论在实践中的应用。
|
6月前
|
机器学习/深度学习 运维 Cloud Native
构建未来:云原生架构在企业数字化转型中的关键作用构建高效机器学习模型的五大策略
【5月更文挑战第31天】 随着企业数字化进程的加速,传统的IT架构日益显示出其局限性。本文将探讨云原生架构如何成为推动企业敏捷性、可扩展性和创新能力的核心力量。通过深入分析云原生技术的基本原理及其在业务连续性、资源优化和跨云协作方面的应用,揭示了其在实现高效、灵活的企业IT环境中所扮演的角色。
|
2月前
|
Cloud Native 关系型数据库 Serverless
基于阿里云函数计算(FC)x 云原生 API 网关构建生产级别 LLM Chat 应用方案最佳实践
本文带大家了解一下如何使用阿里云Serverless计算产品函数计算构建生产级别的LLM Chat应用。该最佳实践会指导大家基于开源WebChat组件LobeChat和阿里云函数计算(FC)构建企业生产级别LLM Chat应用。实现同一个WebChat中既可以支持自定义的Agent,也支持基于Ollama部署的开源模型场景。
443 16
|
1月前
|
机器学习/深度学习 程序员
【机器学习】朴素贝叶斯原理------迅速了解常见概率的计算
【机器学习】朴素贝叶斯原理------迅速了解常见概率的计算
下一篇
无影云桌面