R绘图案例|基于分面的面积图绘制

简介: R绘图案例|基于分面的面积图绘制

简介

最近参加一个统计建模的比赛。模型建模后,需要展示不同模型的性能指标,数据如下所示:


其中,第 1 列是不同样本,共376条。第 2-4 列是随机森林得到的结果,第 5-7 列是XGBoost的结果。一共使用了三种评价指标(分类数据:准确率,召回率和 F1 得分)。

对于这样的数据,读者会使用这么的方式进行可视化?欢迎文末留言交流~

类似的文章还有:分面中添加不同的直线R绘图案例|基于分面的折线图绘制

小编当时想到的是,使用面积图展示,最终图形如下:

aba70cc514d79af92d11175a4f5bd5b3.png



结论:从图中可以看出,两种集成算法对于 376 个叶类分类结果的评估指标都比较接近于 1,说明这两种方法整体效果比较满意。但是对于 XGBoost 来说,小于 1 的部分更多,说明某些叶类分类效果差的情况更多。

注意:如果不是这个方向,可能看的不大懂。但是没关系,学会绘制,并将其用到自己的领域即可。在公众号后台回复[建模比赛案例图形]即可免费获取。

接下来,将展示整个绘制过程。

加载数据

library(readxl)   # 加载 Excel 数据集
library(ggplot2)  # 绘制图形
library(tidyverse) 
library(cowplot)  # 合并图形
library(viridis)  # 图形配色
library(showtext) # 解决中文字体显示问题
showtext_auto()

使用 readxl 包中的 read_excel() 加载 sheet=1 的数据集。并修改数据列名预览如下:

dat = read_excel("test.xlsx",sheet=1,na="NA")
colnames(dat) = c("Id",paste("X",1:6,sep=''))
head(dat)


使用 Tidyverse[1] 包中的 pivot_longer() 将宽表转化为长表,具体教程可见:《R语言教程》[2]。此时得到 ggplot2 所需的数据类型。

注意:小编这里将不同评价指标单独绘制,最后进行合并。

dat %>% select(c(Id,X1,X4)) %>% rename("随机森林"=X1, "XGBoost"=X4) %>% 
  pivot_longer(
             cols = c("随机森林","XGBoost"),
             names_to = "method",
             names_transform = list(method = as.character),
             values_to = "Acc") -> dat1


绘制单个评价指标结果

先绘制准确率的图形,使用的几何对象为:geom_area(),并利用 facet_wrap() 对方法(method)进行分面。之后,对主题以进行修改。使用自定义的颜色修改配色。

cols <- c("#85BA8F", "#A3C8DC","#349839","#EA5D2D","#EABB77","#F09594")
p1 = ggplot(dat1) + 
  geom_area(aes(Id,Acc),fill = cols[1]) + 
  facet_wrap(vars(method),nrow = 2,strip.position = "top") +
  theme_bw() + 
  ylab("精确率") + 
  xlab("叶类") + #主题设置
  theme(panel.grid = element_blank()) 
p1


同理,绘制其他两种指标体系的结果。这里就不放出来了,完整代码见公众号,回复【建模比赛案例图形】即可免费获取,或者文末。

合并图形

最后使用 cowplot[3] 包中的 plot_grid() 将三个指标图形进行合并

plot_grid(p1,p2,p3,ncol = 3)

aba70cc514d79af92d11175a4f5bd5b3.png


完整代码

# install.packages("readxl")
library(readxl)
library(ggplot2)
library(tidyverse)
library(cowplot)
library(viridis)
library(showtext)
showtext_auto()
### 绘制不同方法的区域图===========
dat = read_excel("test.xlsx",sheet=1,na="NA")
colnames(dat) = c("Id",paste("X",1:6,sep=''))
head(dat)
dat %>% select(c(Id,X1,X4)) %>% rename("随机森林"=X1, "XGBoost"=X4) %>% 
  pivot_longer(
             cols = c("随机森林","XGBoost"),
             names_to = "method",
             names_transform = list(method = as.character),
             values_to = "Acc") -> dat1
head(dat1)
cols <- c("#85BA8F", "#A3C8DC","#349839","#EA5D2D","#EABB77","#F09594")
#==
p1 = ggplot(dat1) + 
  geom_area(aes(Id,Acc),fill = cols[1]) + 
  facet_wrap(vars(method),nrow = 2,strip.position = "top") +
  theme_bw() + 
  ylab("精确率") + 
  xlab("叶类") + #主题设置
  theme(panel.grid = element_blank()) 
p1
#==
dat %>% select(c(Id,X2,X5)) %>% rename("随机森林"=X2, "XGBoost"=X5) %>% 
  pivot_longer(
    cols = c("随机森林","XGBoost"),
    names_to = "method",
    names_transform = list(method = as.character),
    values_to = "Acc") -> dat2
p2 = ggplot(dat2) + geom_area(aes(Id,Acc),fill = cols[2]) + facet_wrap(vars(method),nrow = 2,strip.position = "top") +
  theme_bw() + ylab("召回率") + xlab("叶类") + #主题设置
  theme(panel.grid = element_blank())
p2
#==
dat %>% select(c(Id,X3,X6)) %>% rename("随机森林"=X3, "XGBoost"=X6) %>% 
  pivot_longer(
    cols = c("随机森林","XGBoost"),
    names_to = "method",
    # names_transform = list(method = as.factor),
    values_to = "Acc") -> dat3
p3 = ggplot(dat3) + 
  geom_area(aes(Id,Acc),fill = cols[4]) + 
  facet_wrap(vars(method),nrow = 2,strip.position = "top") +
  theme_bw() + 
  ylab("F1得分") + 
  xlab("叶类") + #主题设置
  theme(panel.grid = element_blank())
p3
#== 合并图形
plot_grid(p1,p2,p3,ncol = 3)

参考资料

[1]

Tidyverse: https://www.bing.com/search?q=tidyverse&cvid=5aab6bb79fc74a018e35597fb61195a1&aqs=edge..69i57j69i65l2.178j0j1&pglt=43&FORM=ANNTA1&PC=U531

[2]

《R语言教程》: https://www.math.pku.edu.cn/teachers/lidf/docs/Rbook/html/_Rbook/summary-manip.html#tidyr-longer

[3]

cowplot: https://wilkelab.org/cowplot/

目录
相关文章
|
算法 测试技术 C++
C++算法:柱状图中最大的矩形
C++算法:柱状图中最大的矩形
|
2月前
|
数据可视化 Python
Plotly:绘制蜡烛图
Plotly:绘制蜡烛图
42 0
|
2月前
|
图形学
利用Graphics画出一幅图表绘制折线图
("某工厂某产品年度销售额图表",this.Font, Brushes.Black, new Point(420,14)); pen.Dispose();
20 0
|
6月前
|
数据可视化
绘制GGPLOT2双色XY区间面积图组合交叉折线图数据可视化
绘制GGPLOT2双色XY区间面积图组合交叉折线图数据可视化
|
6月前
【SPSS】基础图形的绘制(条形图、折线图、饼图、箱图)详细操作过程(上)
【SPSS】基础图形的绘制(条形图、折线图、饼图、箱图)详细操作过程
517 0
|
6月前
【SPSS】基础图形的绘制(条形图、折线图、饼图、箱图)详细操作过程(下)
【SPSS】基础图形的绘制(条形图、折线图、饼图、箱图)详细操作过程
418 0
|
6月前
|
存储 数据可视化
使用 plotly 绘制旭日图
使用 plotly 绘制旭日图
303 0
如何用ggplot2绘制基因功能富集气泡图?
如何用ggplot2绘制基因功能富集气泡图?
|
数据挖掘
ggplot2| 绘制KEGG气泡图
ggplot2| 绘制KEGG气泡图
419 0
|
数据可视化 数据挖掘
绘图系列|R-corrplot相关图
绘图系列|R-corrplot相关图
136 0