带你读《Elastic Stack 实战手册》之60:——3.5.16.4.Data frame analytics(3)

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 带你读《Elastic Stack 实战手册》之60:——3.5.16.4.Data frame analytics(3)


《Elastic Stack 实战手册》——三、产品能力——3.5 进阶篇——3.5.16. Machine learning——3.5.16.4.Data frame analytics(2) https://developer.aliyun.com/article/1227192



我们接下来的兴趣点是找到在 King County 这个地方哪些 zipcode 是比较异常的地方。这个即便是在中国的房地产中,也是非常有意思的一个兴趣点,比如我们可以发现北京的那个区域的房价比较突出:价钱比较高,或者价钱比较低。

 

我们接下来对数据进行 Transform。我们按照之前的方法来进行操作。显然针对我们的情况,我们选择 zipcode 作为 entity。

image.png

image.png

image.png

image.png


我们选择 zipcode 为 entity,然后按照上面的显示分别计算出来它们的 aggregations。

image.png

image.png

image.png

image.png


我们可以看到类似如上文档的索引 king-country-real-estate。

 

接下来我们使用 Elastic 机器学习提供的 Outlier Detection 来判定哪些 zipcode 是异常的。

image.png

image.png

image.png

image.png

image.png


《Elastic Stack 实战手册》——三、产品能力——3.5 进阶篇——3.5.16. Machine learning——3.5.16.4.Data frame analytics(4) https://developer.aliyun.com/article/1227189

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
机器学习/深度学习 安全 测试技术
带你读《Elastic Stack 实战手册》之60:——3.5.16.4.Data frame analytics(1)
带你读《Elastic Stack 实战手册》之60:——3.5.16.4.Data frame analytics(1)
109 0
|
定位技术 索引
带你读《Elastic Stack 实战手册》之60:——3.5.16.4.Data frame analytics(2)
带你读《Elastic Stack 实战手册》之60:——3.5.16.4.Data frame analytics(2)
|
机器学习/深度学习 Ubuntu 数据挖掘
带你读《Elastic Stack 实战手册》之60:——3.5.16.4.Data frame analytics(4)
带你读《Elastic Stack 实战手册》之60:——3.5.16.4.Data frame analytics(4)
103 0
|
存储 SQL NoSQL
带你读《Elastic Stack 实战手册》之37:——3.4.2.18.Denormalizing / flattening data
带你读《Elastic Stack 实战手册》之37:——3.4.2.18.Denormalizing / flattening data
125 0
|
SQL 安全 API
带你读《Elastic Stack 实战手册》之54:——3.5.13.Transform (2)
带你读《Elastic Stack 实战手册》之54:——3.5.13.Transform (2)
153 0
|
监控 API 调度
带你读《Elastic Stack 实战手册》之54:——3.5.13.Transform (3)
带你读《Elastic Stack 实战手册》之54:——3.5.13.Transform (3)
122 0
|
存储 监控 数据挖掘
带你读《Elastic Stack 实战手册》之54:——3.5.13.Transform (1)
带你读《Elastic Stack 实战手册》之54:——3.5.13.Transform (1)
168 0
|
机器学习/深度学习 API 索引
带你读《Elastic Stack 实战手册》之54:——3.5.13.Transform (4)
带你读《Elastic Stack 实战手册》之54:——3.5.13.Transform (4)
136 0
|
机器学习/深度学习 存储 运维
带你读《Elastic Stack 实战手册》之59:——3.5.16.3.Anomaly detection(1)
带你读《Elastic Stack 实战手册》之59:——3.5.16.3.Anomaly detection(1)
173 0
|
机器学习/深度学习 运维 数据可视化
带你读《Elastic Stack 实战手册》之59:——3.5.16.3.Anomaly detection(4)
带你读《Elastic Stack 实战手册》之59:——3.5.16.3.Anomaly detection(4)
137 0