PolyLoss | 统一CE Loss与Focal Loss,PolyLoss用1行代码+1个超参完成超车!!!(二)

简介: PolyLoss | 统一CE Loss与Focal Loss,PolyLoss用1行代码+1个超参完成超车!!!(二)

4理解多项式系数的影响


在前面的谈论中建立了PolyLoss框架,并展示了Cross-entropy lossFocal loss简单地对应于不同的多项式系数,其中Focal loss就可以表达为水平移动了多项式系数的Cross-entropy loss

这里要深入研究了垂直调整多项式系数对于训练可能的影响。具体来说,作者探索了3种分配多项式系数的不同策略:

  • 去掉高阶项
  • 调整多个靠前多项式系数
  • 调整第1个多项式系数

image.png

作者发现,调整第1个多项式系数(Poly-1)便可以最大的增益,而且仅仅需要很小的代码更改和超参数调整。

4.1 :回顾高阶多项式项的删除

已有研究表明,降低高阶多项式和调整前置多项式可以提高模型的鲁棒性和性能。作者采用相同的损失公式,并在ImageNet-1K上比较它们与基线Cross-entropy loss的性能。

image.png

如图2a所示,需要求和超过600个多项式项才能匹配Cross-entropy loss的精度。值得注意的是,去除高阶多项式不能简单地解释为调整学习率。为了验证这一点,图2b比较了在不同的截止条件下不同学习率下的性能:无论从初始值0.1增加或减少学习率,准确率都会变差

为了理解为什么高阶项很重要,作者对Cross-entropy loss中去除前N个多项式项后的结果进行了求和:

定理1:对于任何小的ζ>0,δ>0,如果N>ζ,那么对于任何p∈[δ,1],都有|R_N(p)|<ζ和|R'_N(p)|<ζ。

因此,从损失和损失导数[δ,1]的角度来看,需要取一个大的N来确保尽可能地接近。对于固定ζ,当δ接近0时,N迅速增大。作者的实验结果与定理一致。

高阶(j>N+1)多项式在训练的早期阶段发挥重要作用,此时通常接近于零。例如,当时,根据公式,第500项的梯度系数为,这是相当大的。与前面的工作不同,本文作者的实验结果表明,不能轻易地减少高阶多项式

PolyLoss框架中,丢弃高阶多项式等价于将所有高阶(j>N+1)多项式系数垂直推到0。

4.2 :扰动重要的多项式系数

在本文中提出了在PolyLoss框架中设计一个新的损失函数的替代方法,其中调整了每个多项式的系数。一般来说,有无穷多个多项式系数需要调节。因此,对最一般损失进行优化是不可行的:

image.png

第4.1小节已经表明,在训练中需要数百个多项式来很好地完成诸如ImageNet-1K分类等任务。如果天真地将方程中的无限和截断到前几百项,那么对这么多多项式的调优系数仍然会带来一个非常大的搜索空间。此外,综合调整许多系数也不会优于Cross-entropy loss

为了解决这一问题,作者提出扰动交叉熵损失中的重要的多项式系数(前N项),同时保持其余部分不变。将所提出的损失公式表示为,其中N表示将被调整的重要系数(前N项)的数量。

image.png

这里,用来替代第个Cross-entropy loss项的系数,其中是扰动项。这使得可以精确地定位第1个N个多项式,而不需要担心无限多个高阶(j>N+1)系数。

表3显示了的性能优于Cross-entropy loss的。

作者还探索了在N=1~3的中对j的N维网格搜索和贪婪网格搜索,发现简单地调整第1个多项式的系数(N=1)便可以获得更好的分类精度。

4.3 :简单而有效

如前一节所示,作者发现调整第1个多项式项会带来最显著的增益。在本节中,进一步简化了Poly-N公式,并重点计算了Poly-1,其中只修改了Cross-entropy loss中的第1个多项式系数。

作者还研究了不同第1项缩放对精度的影响,并观察到增加第1个多项式系数可以提高ResNet-50的精度,如图3a所示。

这一结果表明,Cross-entropy loss在多项式系数值上是次优的,增加第1个多项式系数可以得到一致的改善。

图3b显示了在训练的大部分时间内,多项式贡献了Cross-entropy梯度的一半以上,这突出了第1个多项式项与无限多项的其他项相比的重要性。

因此,在本文的其余部分中,都采用了的形式,并主要关注于调整重要前几项多项式系数。从方程中可以明显看出,它只通过一行代码来修改了原始的损失实现(在Cross-entropy loss的基础上添加一个项)。

注意,所有训练超参数都针对Cross-entropy loss进行了优化。即便如此,对Poly-1公式中的第1个多项式系数进行简单的网格搜索可以显著提高分类精度。作者还发现对LPoly-1的其他超参数进行优化还可以获得更高的精度。

4.4 PolyLoss的Tensorflow实现

1、PolyLoss-CE

def poly1_cross_entropy(logits, labels, epsilon=1.0):
    # pt, CE, and Poly1 have shape [batch].
    pt = tf.reduce_sum(labels * tf.nn.softmax(logits), axis=-1)
    CE = tf.nn.softmax_cross_entropy_with_logits(labels, logits)
    Poly1 = CE + epsilon * (1 - pt)
    return Poly1

2、PolyLoss-Focal Loss

def poly1_focal_loss(logits, labels, epsilon=1.0, gamma=2.0):
    # p, pt, FL, and Poly1 have shape [batch, num of classes].
    p = tf.math.sigmoid(logits)
    pt = labels * p + (1 - labels) * (1 - p)
    FL = focal_loss(pt, gamma)
    Poly1 = FL + epsilon * tf.math.pow(1 - pt, gamma + 1)
    return Poly1


5实验


5.1 图像分类

image.png

image.png

5.2 目标检测

image.png

5.3 3D目标检测


6参考文献


[1].POLYLOSS: A POLYNOMIAL EXPANSION PERSPECTIVE OF CLASSIFICATION LOSS FUNCTIONS


7推荐阅读


NAS-ViT | 超低FLOPs与Params实现50FPS的CPU推理,精度却超越ResNet50!!!

超越 Swin、ConvNeXt | Facebook提出Neighborhood Attention Transformer

CVPR2022 Oral | CosFace、ArcFace的大统一升级,AdaFace解决低质量图像人脸识

相关文章
|
7月前
|
计算机视觉
如何理解focal loss/GIOU(yolo改进损失函数)
如何理解focal loss/GIOU(yolo改进损失函数)
|
7月前
|
机器学习/深度学习 监控 数据可视化
训练损失图(Training Loss Plot)
训练损失图(Training Loss Plot)是一种在机器学习和深度学习过程中用来监控模型训练进度的可视化工具。损失函数是衡量模型预测结果与实际结果之间差距的指标,训练损失图展示了模型在训练过程中,损失值随着训练迭代次数的变化情况。通过观察损失值的变化,我们可以评估模型的拟合效果,调整超参数,以及确定合适的训练停止条件。
1315 5
Focal Loss升级 | E-Focal Loss让Focal Loss动态化,类别极端不平衡也可以轻松解决(二)
Focal Loss升级 | E-Focal Loss让Focal Loss动态化,类别极端不平衡也可以轻松解决(二)
213 0
|
计算机视觉
PolyLoss | 统一CE Loss与Focal Loss,PolyLoss用1行代码+1个超参完成超车!!!(一)
PolyLoss | 统一CE Loss与Focal Loss,PolyLoss用1行代码+1个超参完成超车!!!(一)
248 0
【学习】loss图和accuracy
【学习】loss图和accuracy
417 0
|
机器学习/深度学习 测试技术 PyTorch
Focal Loss升级 | E-Focal Loss让Focal Loss动态化,类别极端不平衡也可以轻松解决(一)
Focal Loss升级 | E-Focal Loss让Focal Loss动态化,类别极端不平衡也可以轻松解决(一)
241 0
|
PyTorch 算法框架/工具 图计算
Pytorch中autograd.Variable.backward的grad_varables参数个人理解浅见
Pytorch中autograd.Variable.backward的grad_varables参数个人理解浅见
138 0
Pytorch中autograd.Variable.backward的grad_varables参数个人理解浅见
|
机器学习/深度学习 人工智能 计算机视觉
Focal Loss详解以及为什么能够提高处理不平衡数据分类的表现
Focal Loss详解以及为什么能够提高处理不平衡数据分类的表现
454 0
Focal Loss详解以及为什么能够提高处理不平衡数据分类的表现
|
机器学习/深度学习
概率视角的Linear Regression
概率视角的Linear Regression
110 0
概率视角的Linear Regression
|
算法 固态存储 计算机视觉
目标检测的Tricks | 【Trick3】IoU loss与focal loss(包含一些变体介绍)
目标检测的Tricks | 【Trick3】IoU loss与focal loss(包含一些变体介绍)
502 0
目标检测的Tricks | 【Trick3】IoU loss与focal loss(包含一些变体介绍)