「主数据架构」14个主数据管理误区

本文涉及的产品
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
简介: 「主数据架构」14个主数据管理误区


它是为企业和企业的要求是不可能得到的

虽然理想情况下是针对“企业”(企业可能不是您的整个组织),但是MDM仍然必须交付应用程序,从而支持多个应用程序,并且在某种程度上能够成为真正的企业。

它是针对单个应用程序的,所以它不必是一个单独的组织规程

MDM工作不应该局限于单个应用程序或主题领域。在您的企业中,构建MDM foundation的工作对未来十年的企业应用程序交付有很大的影响。不要把MDM与第一次交付紧密地联系在一起,否则就很难进行进一步的开发

这一切都是关于-----------------

用数据质量、层次管理、合并/匹配处理、工作流/治理、实时数据集成、企业数据模型或其他内容来填补空白。实际上,都是上面提到的。虽然这些价值主张中的一个或多个可能是最有趣的,并可能启动项目,但是要了解MDM的各种可能性,并准备在需要时利用它们

我可以将主数据放在数据仓库中

是的,可以,但是批处理数据仓库在数据生命周期中太迟了,不能有效地进行实时处理。即使是实时数据仓库通常也缺少MDM的许多功能

大多数主题领域不需要工作流/治理

很多不需要复杂的工作流/治理,因为它们来自于标准的其他地方,而MDM将这些数据合并为主数据。这通常是客户的情况,就像POS系统一样。然而,用于授权和充实的更小的工作流甚至可以增加这些数据的价值

没有投资回报

从技术上讲,这是正确的。除非MDM是提供回报的业务应用程序的一部分,否则MDM就是全部投资。使用这些数据的项目的效率得到了提高,其中许多项目可以通过MDM数据更好地完成它们的功能(最终在某种程度上减少销售或开支),而不是依靠它们自己。企业MDM还提供了更低的组织总拥有成本,只需做一次就可以反复使用

这些项目似乎都失败了

失败捕获了注意力,MDM似乎抓住了传播失败的坏运气。如果你做错了,所有的项目都会失败。MDM需要业务输入才能成功。它不是严格意义上的It项目,这样做会导致失败。出色的MDM为各行各业的公司提供非常高的价值

我从选择MDM供应商开始

从供应商中立的教育和咨询开始。稍后会有时间让供应商参与进来

我可以通过MDM避免数据建模

这个模型是MDM最有用的组件。您投入到数据模型中的所有内容都将获得多次回报。您应该自定义打包的模型,并期望将工作周期投入到这项工作中。

要提高MDM数据的数据质量,最好的方法是首先找出一个数据分析工具,然后对我的数据盲目地运行它

如果你喜欢没有意义的工作,就这样做。数据质量是定制的,应该从理解数据应该遵循哪些规则的概要开始。

数据质量是模糊和无形的

最有效的方法是对数据质量进行评分,并且非常明确。

所有的MDM工具都是一样的

所有的工具都不相同,有些工具甚至不能完成所有的MDM任务,不管您多么努力。有些提供了大量关于主题领域的知识产权(模型、报告、工作流),而有些则没有。你应该决定什么对你来说是重要的。

组织的接受会自己照顾自己

组织接受是最难的部分。在MDM实现中包含组织更改管理,从而获得成功。

第三方数据不适合MDM

第三方数据主要是关于扩展重要主题领域的配置文件,这些领域在MDM中掌握。将第三方数据引入组织实际上已经启动了许多MDM程序。


这篇文章是IBM中型企业计划的一部分,该计划为中型企业提供他们需要的工具、专业知识和解决方案,以成为一个更智能的星球的引擎。我对这个项目的贡献得到了补偿,但这篇文章中表达的观点是我自己的,不一定代表IBM的立场、战略或观点。

相关实践学习
MySQL基础-学生管理系统数据库设计
本场景介绍如何使用DMS工具连接RDS,并使用DMS图形化工具创建数据库表。
相关文章
|
4天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
45 7
|
4天前
|
数据采集 搜索推荐 数据管理
数据架构 CDP 是什么?
数据架构 CDP 是什么?
16 2
|
3月前
|
机器学习/深度学习 数据采集 人工智能
揭秘!47页文档拆解苹果智能,从架构、数据到训练和优化
【8月更文挑战第23天】苹果公司发布了一份47页的研究文档,深入解析了其在智能基础语言模型领域的探索与突破。文档揭示了苹果在此领域的雄厚实力,并分享了其独特的混合架构设计,该设计融合了Transformer与RNN的优势,显著提高了模型处理序列数据的效能与表现力。然而,这种架构也带来了诸如权重平衡与资源消耗等挑战。苹果利用海量、多样的高质量数据集训练模型,但确保数据质量及处理噪声仍需克服。此外,苹果采取了自监督与无监督学习相结合的高效训练策略,以增强模型的泛化与稳健性,但仍需解决预训练任务选择及超参数调优等问题。
148 66
|
3月前
|
物联网 数据管理 Apache
拥抱IoT浪潮,Apache IoTDB如何成为你的智能数据守护者?解锁物联网新纪元的数据管理秘籍!
【8月更文挑战第22天】随着物联网技术的发展,数据量激增对数据库提出新挑战。Apache IoTDB凭借其面向时间序列数据的设计,在IoT领域脱颖而出。相较于传统数据库,IoTDB采用树形数据模型高效管理实时数据,具备轻量级结构与高并发能力,并集成Hadoop/Spark支持复杂分析。在智能城市等场景下,IoTDB能处理如交通流量等数据,为决策提供支持。IoTDB还提供InfluxDB协议适配器简化迁移过程,并支持细致的权限管理确保数据安全。综上所述,IoTDB在IoT数据管理中展现出巨大潜力与竞争力。
106 1
|
15天前
|
关系型数据库 分布式数据库 数据库
云栖大会|从数据到决策:AI时代数据库如何实现高效数据管理?
在2024云栖大会「海量数据的高效存储与管理」专场,阿里云瑶池讲师团携手AMD、FunPlus、太美医疗科技、中石化、平安科技以及小赢科技、迅雷集团的资深技术专家深入分享了阿里云在OLTP方向的最新技术进展和行业最佳实践。
|
29天前
|
存储 人工智能 安全
【荣誉奖项】荣获2024数据治理优秀产品!瓴羊Dataphin联合DAMA发布数据管理技能认证
瓴羊Dataphin连续俩年获得DAMA年度优秀数据治理产品奖,本次与DAMA联合发布“DAMA x 瓴羊 数据管理技能认证”,助力提升全民数据素养。
137 0
【荣誉奖项】荣获2024数据治理优秀产品!瓴羊Dataphin联合DAMA发布数据管理技能认证
|
1月前
|
存储 SQL 分布式计算
湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
【10月更文挑战第7天】湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
66 1
|
1月前
|
数据采集 安全 数据管理
通信行业数据治理:如何实现高效、安全的数据管理?
在未来的发展中,通信行业的企业应加强数据治理意识,提高数据治理能力;同时,积极开展跨行业的合作创新,共同推动行业的繁荣与发展。相信在不久的将来,通信行业将迎来更加美好的明天。
|
1月前
|
存储 大数据 数据处理
洞察未来:数据治理中的数据架构新思维
数据治理中的数据架构新思维对于应对未来挑战、提高数据处理效率、加强数据安全与隐私保护以及促进数据驱动的业务创新具有重要意义。企业需要紧跟时代步伐,不断探索和实践新型数据架构,以洞察未来发展趋势,为企业的长远发展奠定坚实基础。
|
2月前
|
存储 搜索推荐 数据库
MarkLogic在微服务架构中的应用:提供服务间通信和数据共享的机制
随着微服务架构的发展,服务间通信和数据共享成为关键挑战。本文介绍MarkLogic数据库在微服务架构中的应用,阐述其多模型支持、索引搜索、事务处理及高可用性等优势,以及如何利用MarkLogic实现数据共享、服务间通信、事件驱动架构和数据分析,提升系统的可伸缩性和可靠性。
43 5

热门文章

最新文章