PolarDB for PostgreSQL 开源必读手册-云原生HTAP(中)

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: PolarDB for PostgreSQL 开源必读手册-最佳场景实践与压测

接上篇:https://developer.aliyun.com/article/1223066?spm=a2c6h.13148508.setting.32.44ec4f0eNvAByn

PolarDB中有4类算子需要并行化,其中Seqscan的算子的并行化极具代表性。

 

为了最大限度地利用存储的大IO带宽,在顺序扫描时,按照4MB为单位做逻辑切分,尽量将IO打散到不同的盘上,达到所有盘同时提供读服务的效果。该方案还有一个优势在于每个只读节点只扫描部分表文件,最终能缓存的表大小是所有只读节点的BufferPool总和。

 

image.png

 

上图可见,通过增加只读节点,扫描性能线性提升30倍。

 

image.png

 

打开buffer后,扫描时间从37min降至3.75s,提升了600倍。这也是数据亲和性的优势所在。

 

倾斜是传统MPP固有的问题,主要包含两方面:一方面是存储的倾斜,大对象通过heap内部表关联toast表时,因为无法确切地知道实际存储的数据量有多大,无论怎么切分,数据存储都有可能不均衡;另一方面是执行时的倾斜。不同只读节点上的事务、buffer、网络等会抖动,因此也会存在执行计算倾斜。

 

image.png

 

为了解决倾斜问题,我们支持了动态扫描。将协调节点内部分成DataThread和ControlThread,其中DataThread负责收集汇总元组,ControlThread负责控制每个扫描算子的扫描进度。

 

每个算子控制每个节点上scan算子的扫描进度,每个节点上scan算子再扫描下一个块的数据时会向QC节点进行请求查询,从而获得下一个扫描的目标块,使得扫描快的工作进程能多扫描逻辑的数据切片。

 

此外,尽管是冬天分配,过程中我们也尽量考虑了buffer数据亲和性。另外,每个算子的上下文均存储在各个worker的私有内存中,协调节点不存储表的相关信息。

 

image.png

 

上图可见,出现大对象时,静态扫描会出现数据倾斜,而使用动态扫描并没有因为 RO节点增多导致数据倾斜严重。

 

我们利用数据共享的特点,还可支持云原生下极致弹性的要求将Coordinator全链路上各个模块所需要的外部依赖存在共享存储上,每个节点都可以看到相同的数据。同时worker全链路需要的运行时参数通过控制链路从Coordinator同步,使Coordinator和worker无状态化。任何节点都可以作为协调节点,确定了协调节点之后,控制节点再从协调节点获取相关的控制信息。

 

以上方式带来的好处在于:SQL的任何只读节点都可以称为协调节点,解决了协调节点单点的问题。其次,SQL可以在任何节点上起任意数量的worker,使算力达到SQL级别的弹性扩展,使得业务有更多的调度策略。

 

image.png

 

比如四个只读节点,可以让业务域1的SQL只利用只读节点1和只读节点2,业务域2的SQL利用节点3和节点4,为用户提供更多选择。

 

多个计算节点通过等待回放和globalsnapshot机制完成。等待回放能够保证所有需要的数据版本已经同步完成,globalsnapshot能够保证选取统一的可读版本。

 

主要流程如下:用户SQL发送后,生成计划并确定协调节点,协调节点会广播ReadLSN,每个worker节点等待回放到ReadLSN。结束之后获取各自的snapshot,通过序列化发送给协调节点。协调节点汇总所有worker,选出最小的snapshot并通过广播发给各个节点,再由广播执行计划树,从而可以保证每个worker能看到相同的数据、相同的快照和相同的plan,最终开始执行。

 

image.png

 

上图为使用1TB的TPCH进行的测试。

 

接下篇:https://developer.aliyun.com/article/1223064?groupCode=polardbforpg

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
8天前
|
关系型数据库 分布式数据库 数据库
PolarDB 开源基础教程系列 9 开源社区合作和共建
本文介绍了玩转 PolarDB 开源社区指南:如何搭建 PolarDB 开发环境及参与开源社区。 主要内容: 1. **搭建开发环境**:提供多种 Docker 镜像供开发者选择,支持 x86_64 和 ARM64 架构,适配 CentOS、Debian、Ubuntu 等多个 Linux 发行版。 2. **编译与部署**:通过 Docker 容器克隆 PolarDB 源码并编译安装,支持构建一写多读集群测试 ePQ MPP 优化器功能。 3. **参与开源社区**:介绍个人、生态伙伴和用户如何从社区中获取技能、建立连接、积累战绩并提升影响力。社区活动涵盖公开课、训练营、编程大赛、企业行等。
52 5
|
8天前
|
存储 关系型数据库 分布式数据库
PolarDB 开源基础教程系列 8 数据库生态
PolarDB是一款开源的云原生分布式数据库,源自阿里云商业产品。为降低使用门槛,PolarDB携手伙伴打造了完整的开源生态,涵盖操作系统、芯片、存储、集成管控、监控、审计、开发者工具、数据同步、超融合计算、ISV软件、开源插件、人才培养、社区合作及大型用户合作等领域。通过这些合作伙伴,PolarDB提供了丰富的功能和服务,支持多种硬件和软件环境,满足不同用户的需求。更多信息请访问[PolarDB开源官方网站](https://openpolardb.com/home)。
44 4
|
8天前
|
SQL 关系型数据库 分布式数据库
PolarDB 开源基础教程系列 7.5 应用实践之 TPCH性能优化
PolarDB在复杂查询、大数据量计算与分析场景的测试和优化实践.
36 7
|
8天前
|
人工智能 关系型数据库 分布式数据库
PolarDB 开源基础教程系列 7.4 应用实践之 AI大模型外脑
PolarDB向量数据库插件通过实现通义大模型AI的外脑,解决了通用大模型无法触达私有知识库和产生幻觉的问题。该插件允许用户将新发现的知识和未训练的私有知识分段并转换为向量,存储在向量数据库中,并创建索引以加速相似搜索。当用户提问时,系统将问题向量化并与数据库中的向量进行匹配,找到最相似的内容发送给大模型,从而提高回答的准确性和相关性。此外,PolarDB支持多种编程语言接口,如Python,使数据库具备内置AI能力,极大提升了数据处理和分析的效率。
34 4
|
8天前
|
搜索推荐 关系型数据库 分布式数据库
PolarDB 开源基础教程系列 7.3 应用实践之 精准营销场景
本文介绍了基于用户画像的精准营销技术,重点探讨了如何通过标签组合快速圈选目标人群。实验分为三部分: 1. **传统方法**:使用字符串存储标签并进行模糊查询,但性能较差,每次请求都需要扫描全表。 2. **实验1**:引入`pg_trgm`插件和GIN索引,显著提升了单个模糊查询条件的性能。 3. **实验2**:改用数组类型存储标签,并结合GIN索引加速包含查询,性能进一步提升。 4. **实验3**:利用`smlar`插件实现近似度过滤,支持按标签重合数量或比例筛选。
28 3
|
8天前
|
关系型数据库 分布式数据库 PolarDB
PolarDB 开源基础教程系列 7.2 应用实践之 跨境电商场景
本文介绍了如何在跨境电商场景中快速判断商标或品牌侵权,避免因侵权带来的法律纠纷。通过创建品牌表并使用PostgreSQL的pg_trgm插件和GIN索引,实现了高性能的字符串相似匹配功能。与传统方法相比,PolarDB|PostgreSQL的方法不仅提升了上万倍的查询速度,还解决了传统方法难以处理的相似问题检索。具体实现步骤包括创建品牌表、插入随机品牌名、配置pg_trgm插件及索引,并设置相似度阈值进行高效查询。此外,文章还探讨了字符串相似度计算的原理及应用场景,提供了进一步优化和扩展的方向。
35 11
|
8天前
|
SQL 关系型数据库 分布式数据库
PolarDB 开源基础教程系列 7.1 快速构建“海量逼真”数据
本文介绍了如何使用PostgreSQL和PolarDB快速生成“海量且逼真”的测试数据,以满足不同业务场景的需求。传统数据库测试依赖标准套件(如TPC-C、TPC-H),难以生成符合特定业务特征的复杂数据。通过自定义函数(如`gen_random_int`、`gen_random_string`等)、SRF函数(如`generate_series`)和pgbench工具,可以高效生成大规模、高仿真度的数据,并进行压力测试。文中还提供了多个示例代码展示.
25 7
|
8天前
|
关系型数据库 分布式数据库 数据库
PolarDB 开源基础教程系列 6 开源插件扩展
1、当前环境已安装并支持哪些插件 2、AI外脑插件: vector 3、营销场景目标人群圈选插件: smlar 4、地理信息搜索插件: PostGIS 5、中文分词插件: pg_jieba 6、融合计算插件: duckdb_fdw 7、读写分离工具: pgpool-II
26 3
|
8天前
|
关系型数据库 分布式数据库 数据安全/隐私保护
PolarDB 开源基础教程系列 5 高级特性体验
PolarDB 特性解读与体验涵盖多项关键技术,包括预读/预扩展、Shared Server(建议使用连接池)、闪回表和闪回日志、弹性跨机并行查询(ePQ)及TDE透明数据加密。预读/预扩展通过批量I/O操作显著提升Vacuum、SeqScan等场景性能;Shared Server优化高并发短连接处理;闪回功能可恢复表至指定时间点;ePQ支持跨机并行查询以提高复杂查询效率;TDE确保数据存储层的安全加密。
21 1
|
8天前
|
SQL 存储 关系型数据库
PolarDB 开源基础教程系列 4 日常运维
PolarDB日常运维指南涵盖了多个关键操作,包括读写节点故障切换、增加只读节点、配置WAL日志归档、备份与恢复、创建容灾实例以及排查CPU负载高等。通过详细的步骤和代码示例,本文档帮助用户在本地环境中体验和学习PolarDB的高级功能,如共享存储架构下的集群管理。特别地,文档提供了如何使用`polar_basebackup`工具进行备份和恢复,确保数据安全;并通过`pg_stat_statements`插件定位慢查询,优化数据库性能。此外,还介绍了常见问题的排查方法,如业务量上涨或长时间执行的SQL语句导致的CPU高负载。更多内容和进阶课程可参考提供的GitHub链接和官方文档。
19 1

热门文章

最新文章

相关产品

  • 云原生数据库 PolarDB