Python 控制台操作的文字版“数独”游戏(非GUI版本)

简介: Python 控制台操作的文字版“数独”游戏(非GUI版本)

数独


   数独起源于18世纪初瑞士数学家欧拉等人研究的拉丁方阵(Latin Square)。19世纪80年代,一位美国的退休建筑师格昂斯(Howard Garns)根据这种拉丁方阵发明了一种填数趣味游戏,这就是数独的雏形。20世纪70年代,人们在美国纽约的一本益智杂志《Math Puzzles and Logic Problems》上发现了这个游戏,当时被称为填数字(Number Place),这也是公认的数独最早的见报版本。——摘自百度百科


除了九宫格数独,还有许多各种变形数独(如下图),也有几个数独复合在一起的联合数独等等。

20210909203235372.png



python实现数独游戏


本篇以九宫格数独为例,自定义了两个类 Matrix() 和 Sudo(),源代码见本篇末尾。

用法:Sudo(level)

参数:level = 1 ~ 7 ,分别初始化10~70个待填空格,默认值为4。


>>> sudoku = Sudo()
>>> #题目矩阵的数组
>>> sudoku.matrix
[[9, 7, 0, 6, 0, 4, 0, 0, 0],
 [0, 0, 3, 5, 7, 0, 4, 6, 9],
 [0, 0, 0, 2, 0, 9, 0, 7, 0],
 [3, 4, 0, 8, 0, 6, 0, 1, 2],
 [0, 2, 0, 0, 9, 7, 0, 5, 0],
 [0, 6, 0, 0, 0, 0, 7, 0, 4],
 [8, 0, 0, 0, 6, 2, 1, 3, 0],
 [7, 5, 0, 9, 0, 3, 2, 4, 6],
 [6, 0, 2, 0, 4, 0, 0, 0, 0]]
>>> #题目答案的元组
>>> sudoku.matrix.data
((9, 7, 5, 6, 1, 4, 3, 2, 8),
 (2, 1, 3, 5, 7, 8, 4, 6, 9),
 (4, 8, 6, 2, 3, 9, 5, 7, 1),
 (3, 4, 7, 8, 5, 6, 9, 1, 2),
 (1, 2, 8, 4, 9, 7, 6, 5, 3),
 (5, 6, 9, 3, 2, 1, 7, 8, 4),
 (8, 9, 4, 7, 6, 2, 1, 3, 5),
 (7, 5, 1, 9, 8, 3, 2, 4, 6),
 (6, 3, 2, 1, 4, 5, 8, 9, 7))
>>> 
>>> #矩阵中空格坐标的元组
>>> m.zero
[(0, 2), (0, 4), (0, 6), (0, 7), (0, 8), (1, 0), (1, 1), (1, 5), (2, 0), (2, 1),
 (2, 2), (2, 4), (2, 6), (2, 8), (3, 2), (3, 4), (3, 6), (4, 0), (4, 2), (4, 3),
 (4, 6), (4, 8), (5, 0), (5, 2), (5, 3), (5, 4), (5, 5), (5, 7), (6, 1), (6, 2),
 (6, 3), (6, 8), (7, 2), (7, 4), (8, 1), (8, 3), (8, 5), (8, 6), (8, 7), (8, 8)]
>>> 



游戏操作过程

>>> m = Sudo(1)
>>> m.Question   # 1~9 为已知数字, 0 表示待填的空格
6 0 3 | 8 7 5 | 0 2 1
7 2 5 | 1 3 9 | 0 6 8
1 0 8 | 2 4 0 | 5 7 3
------+-------+------
3 5 4 | 6 9 7 | 8 1 2
0 0 9 | 5 0 8 | 6 3 4
8 6 1 | 4 2 3 | 7 9 5
------+-------+------
9 8 7 | 3 5 0 | 1 4 6
4 3 6 | 9 8 1 | 2 5 7
5 1 2 | 7 0 4 | 3 8 9
>>> m.Try()  #返回待填空的坐标,左上第一格坐标为(1,1),最右下一格的坐标为(9,9)
[(1, 2), (1, 7), (2, 7), (3, 2), (3, 6), (5, 1), (5, 2), (5, 5), (7, 6), (9, 5)]
>>> m.Try(1,2) #返回某一格可填的数字
{9, 4}
>>> [m.Try(x,y) for x,y in m.Try()]  #返回所有空格
[{9, 4}, {9, 4}, {4}, {9}, {6}, {2}, {7}, {1}, {2}, {6}]
>>> m.Get(1,2)  #获取某坐标的答案
4
>>> m.pprint() #返回任意中间状态
6 4 3 | 8 7 5 | 0 2 1
7 2 5 | 1 3 9 | 0 6 8
1 0 8 | 2 4 0 | 5 7 3
------+-------+------
3 5 4 | 6 9 7 | 8 1 2
0 0 9 | 5 0 8 | 6 3 4
8 6 1 | 4 2 3 | 7 9 5
------+-------+------
9 8 7 | 3 5 0 | 1 4 6
4 3 6 | 9 8 1 | 2 5 7
5 1 2 | 7 0 4 | 3 8 9
>>> m.Fill(1,2,4)  #Fill(x,y,value) 在坐标(x,y)空格内填上数字value
>>> [m.Try(x,y) for x,y in m.Try()]
[{9}, {4}, {9}, {6}, {2}, {7}, {1}, {2}, {6}]
>>> m.Try()
[(1, 7), (2, 7), (3, 2), (3, 6), (5, 1), (5, 2), (5, 5), (7, 6), (9, 5)]
>>>
>>> m.Answer  #可以提前“偷看”答案
6 4 3 | 8 7 5 | 9 2 1
7 2 5 | 1 3 9 | 4 6 8
1 9 8 | 2 4 6 | 5 7 3
------+-------+------
3 5 4 | 6 9 7 | 8 1 2
2 7 9 | 5 1 8 | 6 3 4
8 6 1 | 4 2 3 | 7 9 5
------+-------+------
9 8 7 | 3 5 2 | 1 4 6
4 3 6 | 9 8 1 | 2 5 7
5 1 2 | 7 6 4 | 3 8 9
>>> 
>>> 
>>> m.valid  #检查所有空格是否填满并正确
False
>>> #以下代码填上全部空格,前提条件所有待填空格只有一种选择时才有效
>>> [m.Fill(x,y,z) for x,y,z in [list(x)+[*z] for x,z in list(zip(m.Try(),[m.Try(x,y) for x,y in m.Try()]))]]
>>>
>>> m.valid  #检查是否已填完,全部正确返回True
True
>>> m.Question
6 0 3 | 8 7 5 | 0 2 1
7 2 5 | 1 3 9 | 0 6 8
1 0 8 | 2 4 0 | 5 7 3
------+-------+------
3 5 4 | 6 9 7 | 8 1 2
0 0 9 | 5 0 8 | 6 3 4
8 6 1 | 4 2 3 | 7 9 5
------+-------+------
9 8 7 | 3 5 0 | 1 4 6
4 3 6 | 9 8 1 | 2 5 7
5 1 2 | 7 0 4 | 3 8 9
>>> 


一步完成答案

>>> sudoku = Sudo(6)
>>> sudoku.Question
0 0 0 | 0 0 0 | 0 0 0
0 0 0 | 0 0 3 | 0 7 0
8 1 0 | 4 0 9 | 0 0 2
------+-------+------
0 0 0 | 0 9 0 | 0 0 0
1 7 0 | 0 5 0 | 0 3 4
0 0 0 | 0 0 4 | 0 9 0
------+-------+------
0 0 0 | 8 0 0 | 1 4 0
0 3 0 | 0 0 0 | 0 0 0
0 0 0 | 5 0 0 | 0 0 9
>>> sudoku.valid
False
>>> sudoku.Solve()
True
>>> sudoku.valid
True
>>> sudoku.pprint()
2 4 3 | 1 7 5 | 9 6 8
9 5 6 | 2 8 3 | 4 7 1
8 1 7 | 4 6 9 | 3 5 2
------+-------+------
3 6 4 | 7 9 2 | 8 1 5
1 7 9 | 6 5 8 | 2 3 4
5 8 2 | 3 1 4 | 7 9 6
------+-------+------
7 9 5 | 8 2 6 | 1 4 3
6 3 8 | 9 4 1 | 5 2 7
4 2 1 | 5 3 7 | 6 8 9
>>> 


完成时间测试

>>> sudo1 = Sudo()
>>> sudo1.timeSolve()
0.007241964340209961
>>> sudo2 = Sudo(5)
>>> sudo2.timeSolve()
0.02873539924621582
>>> sudo3 = Sudo(6)
>>> sudo3.timeSolve()
0.20312190055847168
>>> sudo4 = Sudo(7)
>>> sudo4.timeSolve()
0.022271156311035156
>>> 
# 并非空格越多耗时越多;矩阵是随机产生的,个别的可能要10多秒才能出答案

矩阵变换

同一数独题目,通过矩阵变换可以变化出千千万万不同的排列来。同一组数字通过变换,粗略估算一下至少有6的9次方个变化,数量为1000万以上。



转置和反序等

>>> su = Sudo()
>>> su.pprint()
5 4 0 | 7 9 0 | 0 0 3
1 3 0 | 2 0 0 | 5 6 0
0 0 8 | 3 0 0 | 0 9 1
------+-------+------
3 0 4 | 0 8 0 | 9 1 2
2 0 0 | 0 1 9 | 0 3 0
0 9 1 | 4 0 2 | 0 8 5
------+-------+------
8 7 5 | 0 0 0 | 1 0 6
0 0 3 | 1 0 4 | 0 5 0
0 1 0 | 8 0 0 | 0 0 0
>>> su.mat.T.pprint()
5 1 0 | 3 2 0 | 8 0 0
4 3 0 | 0 0 9 | 7 0 1
0 0 8 | 4 0 1 | 5 3 0
------+-------+------
7 2 3 | 0 0 4 | 0 1 8
9 0 0 | 8 1 0 | 0 0 0
0 0 0 | 0 9 2 | 0 4 0
------+-------+------
0 5 0 | 9 0 0 | 1 0 0
0 6 9 | 1 3 8 | 0 5 0
3 0 1 | 2 0 5 | 6 0 0
>>> su.mat.T1.pprint()
3 0 0 | 0 9 7 | 0 4 5
0 6 5 | 0 0 2 | 0 3 1
1 9 0 | 0 0 3 | 8 0 0
------+-------+------
2 1 9 | 0 8 0 | 4 0 3
0 3 0 | 9 1 0 | 0 0 2
5 8 0 | 2 0 4 | 1 9 0
------+-------+------
6 0 1 | 0 0 0 | 5 7 8
0 5 0 | 4 0 1 | 3 0 0
0 0 0 | 0 0 8 | 0 1 0
>>> su.mat.T2.pprint()
0 1 0 | 8 0 0 | 0 0 0
0 0 3 | 1 0 4 | 0 5 0
8 7 5 | 0 0 0 | 1 0 6
------+-------+------
0 9 1 | 4 0 2 | 0 8 5
2 0 0 | 0 1 9 | 0 3 0
3 0 4 | 0 8 0 | 9 1 2
------+-------+------
0 0 8 | 3 0 0 | 0 9 1
1 3 0 | 2 0 0 | 5 6 0
5 4 0 | 7 9 0 | 0 0 3
>>> su.mat.T3.pprint()
0 0 0 | 0 0 8 | 0 1 0
0 5 0 | 4 0 1 | 3 0 0
6 0 1 | 0 0 0 | 5 7 8
------+-------+------
5 8 0 | 2 0 4 | 1 9 0
0 3 0 | 9 1 0 | 0 0 2
2 1 9 | 0 8 0 | 4 0 3
------+-------+------
1 9 0 | 0 0 3 | 8 0 0
0 6 5 | 0 0 2 | 0 3 1
3 0 0 | 0 9 7 | 0 4 5
>>> 



交换大行或大列

>>> su = Sudo()
>>> su.pprint()
0 0 0 | 0 7 2 | 5 3 8
5 8 0 | 0 3 0 | 0 0 0
0 3 7 | 0 8 0 | 0 0 1
------+-------+------
3 0 0 | 6 9 8 | 0 0 0
8 2 0 | 7 0 4 | 0 5 0
0 0 1 | 0 0 0 | 9 0 4
------+-------+------
9 6 0 | 8 4 0 | 0 2 5
0 5 8 | 0 2 1 | 0 0 6
0 1 4 | 3 0 5 | 8 0 7
>>> su.mat.R(1,2).pprint()
3 0 0 | 6 9 8 | 0 0 0
8 2 0 | 7 0 4 | 0 5 0
0 0 1 | 0 0 0 | 9 0 4
------+-------+------
0 0 0 | 0 7 2 | 5 3 8
5 8 0 | 0 3 0 | 0 0 0
0 3 7 | 0 8 0 | 0 0 1
------+-------+------
9 6 0 | 8 4 0 | 0 2 5
0 5 8 | 0 2 1 | 0 0 6
0 1 4 | 3 0 5 | 8 0 7
>>> su.mat.R(1,3).pprint()
9 6 0 | 8 4 0 | 0 2 5
0 5 8 | 0 2 1 | 0 0 6
0 1 4 | 3 0 5 | 8 0 7
------+-------+------
0 0 0 | 0 7 2 | 5 3 8
5 8 0 | 0 3 0 | 0 0 0
0 3 7 | 0 8 0 | 0 0 1
------+-------+------
3 0 0 | 6 9 8 | 0 0 0
8 2 0 | 7 0 4 | 0 5 0
0 0 1 | 0 0 0 | 9 0 4
>>> su.mat.R(2,3).pprint()
9 6 0 | 8 4 0 | 0 2 5
0 5 8 | 0 2 1 | 0 0 6
0 1 4 | 3 0 5 | 8 0 7
------+-------+------
3 0 0 | 6 9 8 | 0 0 0
8 2 0 | 7 0 4 | 0 5 0
0 0 1 | 0 0 0 | 9 0 4
------+-------+------
0 0 0 | 0 7 2 | 5 3 8
5 8 0 | 0 3 0 | 0 0 0
0 3 7 | 0 8 0 | 0 0 1
>>> su.mat.C(1,2).pprint()
8 4 0 | 9 6 0 | 0 2 5
0 2 1 | 0 5 8 | 0 0 6
3 0 5 | 0 1 4 | 8 0 7
------+-------+------
6 9 8 | 3 0 0 | 0 0 0
7 0 4 | 8 2 0 | 0 5 0
0 0 0 | 0 0 1 | 9 0 4
------+-------+------
0 7 2 | 0 0 0 | 5 3 8
0 3 0 | 5 8 0 | 0 0 0
0 8 0 | 0 3 7 | 0 0 1
>>> 


交换小行或小列

>>> su = Sudo()
>>> su.pprint()
2 4 0 | 5 0 0 | 9 6 3
3 0 0 | 0 0 6 | 4 0 7
0 7 6 | 0 4 9 | 0 0 0
------+-------+------
4 0 5 | 6 0 0 | 0 0 2
1 8 0 | 7 5 2 | 0 3 0
0 2 0 | 0 0 0 | 0 9 5
------+-------+------
0 5 4 | 8 0 3 | 1 2 0
0 0 0 | 9 0 0 | 0 0 8
8 0 3 | 2 6 4 | 0 0 9
>>> su.mat.Rn(2,1,3).pprint()
2 4 0 | 5 0 0 | 9 6 3
3 0 0 | 0 0 6 | 4 0 7
0 7 6 | 0 4 9 | 0 0 0
------+-------+------
0 2 0 | 0 0 0 | 0 9 5
1 8 0 | 7 5 2 | 0 3 0
4 0 5 | 6 0 0 | 0 0 2
------+-------+------
0 5 4 | 8 0 3 | 1 2 0
0 0 0 | 9 0 0 | 0 0 8
8 0 3 | 2 6 4 | 0 0 9
>>> su.mat.Cn(1,2,3).pprint()
2 0 4 | 5 0 0 | 9 6 3
3 0 0 | 0 0 6 | 4 0 7
0 6 7 | 0 4 9 | 0 0 0
------+-------+------
4 5 0 | 6 0 0 | 0 0 2
1 0 8 | 7 5 2 | 0 3 0
0 0 2 | 0 0 0 | 0 9 5
------+-------+------
0 4 5 | 8 0 3 | 1 2 0
0 0 0 | 9 0 0 | 0 0 8
8 3 0 | 2 6 4 | 0 0 9
>>> 



自定义数独题目

以矩阵样本matrixSample为列:

>>> matrixSample
[[8, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 3, 6, 0, 0, 0, 0, 0],
 [0, 7, 0, 0, 9, 0, 2, 0, 0],
 [0, 5, 0, 0, 0, 7, 0, 0, 0],
 [0, 0, 0, 0, 4, 5, 7, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 3, 0],
 [0, 0, 1, 0, 0, 0, 0, 6, 8],
 [0, 0, 8, 5, 0, 0, 0, 1, 0],
 [0, 9, 0, 0, 0, 0, 4, 0, 0]]
>>> m = Sudo(0)
>>> m.Create(matrixSample)
Solving...
Soluted!
>>> m.Question
8 0 0 | 0 0 0 | 0 0 0
0 0 3 | 6 0 0 | 0 0 0
0 7 0 | 0 9 0 | 2 0 0
------+-------+------
0 5 0 | 0 0 7 | 0 0 0
0 0 0 | 0 4 5 | 7 0 0
0 0 0 | 1 0 0 | 0 3 0
------+-------+------
0 0 1 | 0 0 0 | 0 6 8
0 0 8 | 5 0 0 | 0 1 0
0 9 0 | 0 0 0 | 4 0 0
>>> m.Answer
8 1 2 | 7 5 3 | 6 4 9
9 4 3 | 6 8 2 | 1 7 5
6 7 5 | 4 9 1 | 2 8 3
------+-------+------
1 5 4 | 2 3 7 | 8 9 6
3 6 9 | 8 4 5 | 7 2 1
2 8 7 | 1 6 9 | 5 3 4
------+-------+------
5 2 1 | 9 7 4 | 3 6 8
4 3 8 | 5 2 6 | 9 1 7
7 9 6 | 3 1 8 | 4 5 2
>>> 



批量生成数独题目

Sudo.build(n, level)

n = 1~50 ; level = 1~7

矩阵数据保存在全局变量 Sudoku

>>> Sudo.build(6,5)
No. 1:
8 0 0 | 0 7 0 | 0 0 0
0 0 0 | 1 0 0 | 0 0 0
0 3 0 | 0 0 9 | 0 0 2
------+-------+------
3 0 0 | 0 0 6 | 0 0 1
0 1 9 | 0 0 0 | 6 0 4
0 0 6 | 3 0 0 | 7 0 5
------+-------+------
5 7 8 | 9 3 0 | 0 0 0
9 6 3 | 8 0 4 | 0 0 7
0 0 0 | 5 0 7 | 0 0 9
No. 2:
0 2 3 | 0 5 0 | 1 6 0
0 0 0 | 0 0 0 | 0 7 9
0 1 8 | 0 0 7 | 0 0 0
------+-------+------
0 0 0 | 0 0 9 | 0 0 0
0 0 0 | 0 7 0 | 5 0 3
0 0 0 | 5 0 1 | 0 0 4
------+-------+------
8 0 6 | 7 4 3 | 0 0 0
4 0 1 | 0 0 5 | 0 3 0
0 3 2 | 0 0 6 | 0 4 7
No. 3:
5 2 9 | 0 6 0 | 0 7 3
0 4 8 | 2 0 0 | 0 0 0
0 0 0 | 0 0 0 | 0 8 0
------+-------+------
4 0 0 | 0 0 0 | 0 0 1
0 0 0 | 0 9 0 | 0 3 4
2 9 7 | 0 4 0 | 0 0 0
------+-------+------
0 5 0 | 0 0 0 | 2 1 0
0 6 0 | 0 1 0 | 0 4 7
0 0 0 | 3 2 6 | 5 9 0
No. 4:
2 0 4 | 0 0 0 | 1 0 0
0 3 0 | 0 0 0 | 0 0 0
6 8 0 | 3 4 0 | 0 7 0
------+-------+------
3 4 0 | 0 8 0 | 0 0 0
0 0 0 | 2 0 4 | 6 0 3
0 0 2 | 6 3 0 | 0 0 4
------+-------+------
4 6 0 | 8 7 0 | 2 1 0
8 0 0 | 9 0 2 | 0 0 6
0 0 3 | 0 0 0 | 0 0 0
No. 5:
8 5 0 | 6 0 3 | 0 0 0
0 0 6 | 0 0 9 | 0 5 8
9 0 0 | 0 5 8 | 6 0 0
------+-------+------
0 4 0 | 0 0 0 | 9 0 0
0 0 0 | 0 0 4 | 5 6 3
0 0 9 | 5 3 0 | 7 0 0
------+-------+------
6 3 8 | 0 4 0 | 0 0 0
0 0 0 | 0 1 0 | 0 3 0
0 0 0 | 0 6 0 | 8 9 0
No. 6:
9 4 1 | 0 0 8 | 3 5 7
0 0 7 | 0 0 0 | 0 6 9
0 0 0 | 0 0 0 | 0 0 1
------+-------+------
0 0 5 | 0 0 0 | 0 1 2
0 0 6 | 0 8 0 | 5 0 0
7 0 8 | 0 0 0 | 6 0 4
------+-------+------
6 7 0 | 8 0 0 | 0 0 0
2 0 4 | 0 0 0 | 0 0 6
0 0 0 | 7 0 6 | 9 0 8
>>> 
>>> Sudoku[0]
[[8, 0, 0, 0, 7, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 3, 0, 0, 0, 9, 0, 0, 2], [3, 0, 0, 0, 0, 6, 0, 0, 1],
 [0, 1, 9, 0, 0, 0, 6, 0, 4], [0, 0, 6, 3, 0, 0, 7, 0, 5],
 [5, 7, 8, 9, 3, 0, 0, 0, 0], [9, 6, 3, 8, 0, 4, 0, 0, 7],
 [0, 0, 0, 5, 0, 7, 0, 0, 9]]
>>> Sudoku[5]
[[9, 4, 1, 0, 0, 8, 3, 5, 7], [0, 0, 7, 0, 0, 0, 0, 6, 9],
 [0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 5, 0, 0, 0, 0, 1, 2],
 [0, 0, 6, 0, 8, 0, 5, 0, 0], [7, 0, 8, 0, 0, 0, 6, 0, 4],
 [6, 7, 0, 8, 0, 0, 0, 0, 0], [2, 0, 4, 0, 0, 0, 0, 0, 6],
 [0, 0, 0, 7, 0, 6, 9, 0, 8]]
>>> 
>>> Sudoku[2].pprint()
5 2 9 | 0 6 0 | 0 7 3
0 4 8 | 2 0 0 | 0 0 0
0 0 0 | 0 0 0 | 0 8 0
------+-------+------
4 0 0 | 0 0 0 | 0 0 1
0 0 0 | 0 9 0 | 0 3 4
2 9 7 | 0 4 0 | 0 0 0
------+-------+------
0 5 0 | 0 0 0 | 2 1 0
0 6 0 | 0 1 0 | 0 4 7
0 0 0 | 3 2 6 | 5 9 0
>>> 



实战“世界最难数独”


出自搜狗百科词条“世界最难数独”,感觉这个“最”有点水份;难度不是太大,程序用时2.91秒。

20210909205638294.png

>>> m = Sudo()
>>> m.Create([
 [0,0,5,3,0,0,0,0,0],
 [8,0,0,0,0,0,0,2,0],
 [0,7,0,0,1,0,5,0,0],
 [4,0,0,0,0,5,3,0,0],
 [0,1,0,0,7,0,0,0,6],
 [0,0,3,2,0,0,0,8,0],
 [0,6,0,5,0,0,0,0,9],
 [0,0,4,0,0,0,0,3,0],
 [0,0,0,0,0,9,7,0,0]])
Solving...
Soluted!
>>> m.Question
0 0 5 | 3 0 0 | 0 0 0
8 0 0 | 0 0 0 | 0 2 0
0 7 0 | 0 1 0 | 5 0 0
------+-------+------
4 0 0 | 0 0 5 | 3 0 0
0 1 0 | 0 7 0 | 0 0 6
0 0 3 | 2 0 0 | 0 8 0
------+-------+------
0 6 0 | 5 0 0 | 0 0 9
0 0 4 | 0 0 0 | 0 3 0
0 0 0 | 0 0 9 | 7 0 0
>>> m.Answer
1 4 5 | 3 2 7 | 6 9 8
8 3 9 | 6 5 4 | 1 2 7
6 7 2 | 9 1 8 | 5 4 3
------+-------+------
4 9 6 | 1 8 5 | 3 7 2
2 1 8 | 4 7 3 | 9 5 6
7 5 3 | 2 9 6 | 4 8 1
------+-------+------
3 6 7 | 5 4 2 | 8 1 9
9 8 4 | 7 6 1 | 2 3 5
5 2 1 | 8 3 9 | 7 6 4
>>> m.timeSolve()
2.914081335067749
>>> 


完整代码

class Matrix():
    def __init__(self):
        self.val = [[0 for _ in range(9)] for _ in range(9)]
        self.data = tuple(tuple(j for j in i) for i in self.val)
    def __repr__(self):
        return str(self.val)
    def __eq__(self,other):
        return all([self[i]==s for i,s in enumerate(other.val)])
    def __getitem__(self,item):
        return self.val[item]
    def __setitem__(self,item,x):
        if len(x)==9 or set(x)=={i for i in range(1,10)}:
            self.val[item] = list(x)
        else:
            raise ValueError('x is list(), and its length is 9')
    def init1(self,lst=None):
        from random import sample
        from random import choice
        if lst!=None and isinstance(lst,list):
            if set(lst)!={i for i in range(1,10)}: lst=None
        while not self.valid:
            for i in range(9): self[i]=[0 for _ in range(9)]
            self.val[0] = lst if lst!=None else sample([_ for _ in range(1,10)],9)
            for i in range(2):
                if i==0:
                    self[1][:3] = sample(set(self[0])-set(self[0][:3]),3)
                    self[2][:3] = sample(set(self[0])-set(self.N[0]),3)
                else:
                    self[0][3:] = sample(set(self.T[0])-set(self[0]),6)
                self[1][3:-3] = sample(set(self[0])-set(self[0][3:-3])-set(self[1]),3)
                self[2][3:-3] = sample(set(self[0])-set(self.N[1]),3)
                self[1][-3:] = sample(set(self[0])-set(self[1]),3)
                self[2][-3:] = sample(set(self[0])-set(self[2]),3)
                self.val = self.T.val
            for i in range(3,9):
                for j in range(3,9):
                    t = self.fill(i,j)
                    if t!=set(): self[i][j]=choice(list(t))
                    else:break
                if t==set():break
        self.data = tuple(tuple(j for j in i) for i in self.val)
        return self
    def init(self,lst=None):
        from random import sample
        if lst!=None and isinstance(lst,list):
            if set(lst)!={i for i in range(1,10)}: lst=None
        t = False
        while not t:
            for i in range(9): self[i]=[0 for _ in range(9)]
            self.val[0] = lst if lst!=None else sample([_ for _ in range(1,10)],9)
            self[1][:3] = sample(set(self[0])-set(self[0][:3]),3)
            self[2][:3] = sample(set(self[0])-set(self.N[0]),3)
            #self[1][3:-3] = sample(set(self[0])-set(self[0][3:-3])-set(self[1]),3)
            #self[2][3:-3] = sample(set(self[0])-set(self.N[1]),3)
            t = Matrix.solve(self.val)
        self.data = tuple(tuple(j for j in i) for i in self.val)
        return self
    @property
    def valid(self):
        return all([set(i)=={i for i in range(1,10)} for i in self.val+self.N.val+self.T.val])
    def fill(self,i,j):
        if self[i][j]:return self[i][j]
        t = [x for x in [y for y in range(1,10) if y not in self[i]] if x not in self.T[j]]
        return {x for x in t if x not in self.N[i//3*3+j//3]}
    @property
    def T(self):
        t = Matrix()
        t.val = [[self.val[i][j] for i in range(9)] for j in range(9)]
        t.data = tuple(tuple(j for j in i) for i in t.val)
        return t
    @property
    def T1(self):
        t = Matrix()
        t.val = [[self[i][j] for j in range(8,-1,-1)] for i in range(9)]
        t.data = tuple(tuple(j for j in i) for i in t.val)
        return t
    @property
    def T2(self):
        t = Matrix()
        t.val = [[self[i][j] for j in range(9)] for i in range(8,-1,-1)]
        t.data = tuple(tuple(j for j in i) for i in t.val)
        return t
    @property
    def T3(self):
        t = Matrix()
        t.val = [[self[i][j] for j in range(8,-1,-1)] for i in range(8,-1,-1)]
        t.data = tuple(tuple(j for j in i) for i in t.val)
        return t
    @property
    def N(self):
        t = Matrix()
        t.val = [[self[i+3*m][j+3*n] for i in range(3) for j in range(3)]
                        for m in range(3) for n in range(3)]
        t.data = tuple(tuple(j for j in i) for i in t.val)
        return t
    @property
    def M(self):
        t = Matrix()
        t.val[3],t.val[5] = t.val[5],t.val[3]
        t.val = [[self[i+3*m][j+3*n] for i in range(3) for j in range(3)]
                        for m in range(3) for n in range(3)]
        t.data = tuple(tuple(j for j in i) for i in t.val)
        return t
    def R(self,x,y):
        if x not in [1,2,3] or y not in [1,2,3]:
            raise ValueError('x or y range: 1,2,3')
        if x==y: return self
        s = Matrix()
        s.val = self.val
        if x>y: x,y=y,x
        if x==1 and y==2:
            s[0],s[1],s[2],s[3],s[4],s[5] = s[3],s[4],s[5],s[0],s[1],s[2]
        if x==1 and y==3:
            s[0],s[1],s[2],s[6],s[7],s[8] = s[6],s[7],s[8],s[0],s[1],s[2]
        if x==2 and y==3:
            s[3],s[4],s[5],s[6],s[7],s[8] = s[6],s[7],s[8],s[3],s[4],s[5]
        return s
    def Rn(self,n,x,y):
        if n not in [1,2,3] or x not in [1,2,3] or y not in [1,2,3]:
            raise ValueError('n or x or y range: 1,2,3')
        if x==y: return self
        if x>y: x,y=y,x
        x,y = x-1+(n-1)*3,y-1+(n-1)*3
        s = self.T.T
        s[x],s[y] = s[y],s[x]
        return s
    def Cn(self,n,x,y):
        if n not in [1,2,3] or x not in [1,2,3] or y not in [1,2,3]:
            raise ValueError('n or x or y range: 1,2,3')
        if x==y: return self
        if x>y: x,y=y,x
        x,y = x-1+(n-1)*3,y-1+(n-1)*3
        s = self.T
        s[x],s[y] = s[y],s[x]
        return s.T
    def C(self,x,y):
        if x not in [1,2,3] or y not in [1,2,3]:
            raise ValueError('x or y range: 1,2,3')
        if x==y: return self
        s = self.T
        s.R(x,y)
        return s.T
    def pprint(self):
        for k,i in enumerate(self.val):
            for j,n in enumerate(i):
                print(n,end='' if j==8 else ' | ' if j%3==2 else ' ')
            print()
            if k%3==2 and k!=8: print('-'*6+'+'+'-'*7+'+'+'-'*6)
    def __find__(mat,i,j):
        for x in range(i,9):
            for y in range(j,9):
                if mat[x][y]==0: return x,y
        for x in range(9):
            for y in range(9):
                if mat[x][y]==0: return x,y
        return -1,-1
    def __valid__(mat,i,j,n):
        if all([n!=mat[i][j] for j in range(9)]):
            if all([n!=mat[i][j] for i in range(9)]):
                X,Y = i//3*3,j//3*3
                for x in range(X,X+3):
                    for y in range(Y,Y+3):
                        if mat[x][y]==n: return False
                return True
        return False
    def solve(mat,i=0,j=0):
        i,j = Matrix.__find__(mat,i,j)
        if i == -1: return True
        for n in range(1,10):
            if Matrix.__valid__(mat,i,j,n):
                mat[i][j] = n
                if Matrix.solve(mat,i,j): return True
                mat[i][j] = 0
        return False
    def create(self,mat):
        if mat==None and isinstance(mat,list):
            raise ValueError('mat is a list of 9x9 Matrix')
        if not all([len(j)==9 for j in mat]) or len(mat)!=9:
            print('Sudoku must be a 9x9 Matrix')
            return
        self.val = mat
        t = self.T.T
        tmp = [i for i in t.val+t.N.val+t.T.val]
        for i in tmp:
            j = [j for j in i if j!=0]
            if len(j)!=len(set(j)):
                print('Duplicate values in a row(or column or block).')
                return
        print('Solving...')
        if t.solve():
            ret = Sudo()
            print('Soluted!')
            ret.mat.val = mat
            self.data=ret.mat.data = tuple(tuple(j for j in i) for i in t.val)
            return ret
        else:
            self.data = ['Nil']
            print('No solution.')
    @property
    def answer(self):
        sudo = Matrix()
        sudo.val = self.data
        sudo.pprint()
class Sudo():
    def __init__(self,level=4):
        t = Matrix()
        self.mat = self.matrix = t.init()
        if level not in range(8):
            raise ValueError('level range: 1,2,3,4,5,6,7')
        zero = []
        from random import choice
        while len(zero)<level*10:
            if level==0: break
            t = [i for i in range(9)]
            t = (choice(t),choice(t))
            if t not in zero: zero.append(t)
        for i in zero:
            self.Modify(i[0]+1,i[1]+1,0)
        self.zero = sorted(zero)
    def __repr__(self):
        return str(self.mat)
    def pprint(self):
        self.matrix.pprint()
    @property
    def valid(self):
        return self.matrix.valid
    def build(n,level=4):
        global Sudoku
        if not isinstance(n,int) or n<1 or n>50:
            raise ValueError('level range: 1,2,3,...,50')
        #print('Initializing...')
        Sudoku = []
        for i in range(n):
            Sudoku.append(Sudo(level))
        for i,m in enumerate(Sudoku):
            print(f'No. {i+1}:')
            m.pprint()
    def Get(self,x,y):
        if x*y==0 or not -10<x<10 or not -10<y<10:
            raise ValueError('0<|x|,|y|<10')
        if x>0: x-=1
        if y>0: y-=1
        return self.mat.data[x][y]
    def Try(self,x=0,y=0):
        if x==0==y:
            return [(i+1,j+1) for i in range(9) for j in range(9) if self.mat[i][j]==0]
        if x*y==0 or not -10<x<10 or not -10<y<10:
            raise ValueError('0<|x|,|y|<10')
        if x>0: x-=1
        if y>0: y-=1
        num = self.mat.val[x][y]
        if num: return num
        return self.mat.fill(x,y)
    def Fill(self,x,y,value):
        if x*y==0 or not -10<x<10 or not -10<y<10:
            raise ValueError('0<|x|,|y|<10')
        if x>0: x-=1
        if y>0: y-=1
        if self.mat.val[x][y]==0:
            self.mat.val[x][y] = value
            return True
        else:
            return False
    def Modify(self,x,y,value):
        if x*y==0 or not -10<x<10 or not -10<y<10:
            print(x,y)
            raise ValueError('0<|x|,|y|<10')
        if x>0: x-=1
        if y>0: y-=1
        if self.mat.data[x][y]!=0:
            self.mat.val[x][y] = value
            return True
        else:
            return False
    @property
    def Question(self):
        sudo = self
        sudo.val = self.mat.data
        for i in self.zero:
            sudo.Fill(i[0]+1,i[1]+1,0)
        sudo.pprint()
    @property
    def Answer(self):
        return self.mat.answer
    def Create(self,matrix):
        zero = []
        for i,m in enumerate(matrix):
            for j,n in enumerate(m):
                if matrix[i][j]==0:
                    zero.append((i,j))
        self.zero = sorted(zero)
        self.mat.create(matrix)
    def Solve(self):
        if Matrix.solve(self.mat): return True
        return False
    def timeSolve(self):
        from time import time
        t = time()
        Matrix.solve(self.mat)
        print(time()-t)
matrixSample = [
  [8,0,0,0,0,0,0,0,0],
  [0,0,3,6,0,0,0,0,0],
  [0,7,0,0,9,0,2,0,0],
  [0,5,0,0,0,7,0,0,0],
  [0,0,0,0,4,5,7,0,0],
  [0,0,0,1,0,0,0,3,0],
  [0,0,1,0,0,0,0,6,8],
  [0,0,8,5,0,0,0,1,0],
  [0,9,0,0,0,0,4,0,0]]

代码有点繁杂,还可能有不少Bug;本人有点偏爱用推导式解决问题。但这个“数独游戏”也能够简单玩玩了,特别是批量生成数独题目特别方便。下次再补个gui界面,用键鼠来游戏操作才方便。

目录
相关文章
|
1月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
249 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
16天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
59 7
|
1月前
|
Python Windows
查看Python版本
【10月更文挑战第8天】查看Python版本
24 2
|
1月前
|
IDE 网络安全 开发工具
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
本文介绍了如何在PyCharm专业版中连接远程服务器并配置远程Python环境解释器,以便在服务器上运行代码。
286 0
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
|
1月前
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
348 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
|
1月前
|
IDE 开发工具 Python
Python扑克游戏编程---摸大点
Python扑克游戏编程---摸大点
|
1月前
|
Linux Android开发 开发者
【Python】GUI:Kivy库环境安装与示例
这篇文章介绍了 Kivy 库的安装与使用示例。Kivy 是一个开源的 Python 库,支持多平台开发,适用于多点触控应用。文章详细说明了 Kivy 的主要特点、环境安装方法,并提供了两个示例:一个简单的 Hello World 应用和一个 BMI 计算器界面。
46 0
|
1月前
|
机器学习/深度学习 算法框架/工具 Python
基于深度学习的手写数字识别项目GUI(Deep Learning Project – Handwritten Digit Recognition using Python)
基于深度学习的手写数字识别项目GUI(Deep Learning Project – Handwritten Digit Recognition using Python)
60 0
|
2月前
|
Python
python编写下象棋游戏|4-14
python编写下象棋游戏|4-14
|
2月前
|
开发者 Python
Python 的主流版本:Python 3.x
Python 的主流版本:Python 3.x