m基于马尔科夫随机场和Gardner环的WSN网络时间同步matlab仿真

简介: m基于马尔科夫随机场和Gardner环的WSN网络时间同步matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

3784813fd0035f262e513fc5b00ce600_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    RBS算法的累积误差在50us大于80%;ERBS算法的累积误差在25us大于80%;本文所提出的MRF-MAP-Gardner ERBS算法的累积误差在10us大于80%。因此,在降低同步误差方面,MRF-MAP-Gardner ERBS算法性能优于RBS算法和ERBS算法。

6e37e5b599105091d701b8297d70785b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   RBS算法的同步误差在40us到100us所在比重最大,ERBS算法的的同步误差则主要集中在20us以内,而MRF-MAP-Gardner ERBS算法的同步误差集中在18us之内.

2.算法涉及理论知识概要
ERBS是在RBS算法的基础上改进得到的,但其性能上依旧存在如下几个方面的缺陷:在非确定性相位偏差估计方面,EBRS算法假定了相位偏差测量值服从均值为0,方差为的高斯分布,此外,其非确定性相位偏差估计是基于有限个相位偏差测量值来获得的,因此这种方法当WSN网络环境发生较大程度的改变的时候,则会产生较大的估计误差。在时钟漂移估计方面,EBRS算法将其节点时钟漂移模型简化为线性模型进行估计,而实际中,时钟漂移是一个动态变化的过程,对时钟漂移的估计需要进行实时的跟踪和估计才能获得一个较为精确的估计结果。针对这两个问题,提出了一种新型的高精度能量有效无线传感器网络时间同步算法。

  算法通过一种基于马尔科夫随机场的最大后验估计方法对无线传感器网络中不相邻的两个接收节点在多个参考广播消息条件下的相位偏差进行估计,然后通过Gardner环对时钟漂移进行实时的估计和跟踪,实现时间同步过程。

   在非确定性相位偏差估计方面,本文采用了一种基于马尔科夫随机场的最大后验估计算法。定义WSN中任意两个不相邻的的节点i和节点j交换m个参考消息包的相位偏差为:

500676b3a31ed3bfb419838080b0f270_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   在时钟漂移估计方面,由于WSN中各个节点的时钟漂移是由于晶振的频率漂移导致的,假设一个晶振的频率为100Mhz,其频率漂移为20ppm,那么晶振的实际输出频率为100Mhz2Khz。因此,接收节点将存在接收信号与本节点频率不同步的问题。同时,即便是同一型号的晶振,其频率漂移也是存在偏差的,因此需要通过一种实时跟踪和估计的方法来获得各种晶振的时钟漂移值。

3.MATLAB核心程序
```function yout=func_gardner(data0);
nsamp = 2;
data = zeros(1,nsamp*length(data0));
for i = 1:length(data)-2
data(i) = data0(floor(i/nsamp)+1);
end
interplen = length(data);

w = 0.5;%lf输出
q0 = 0.9;
q = zeros(1,interplen);
m = 5;
j = 3;
C1 = 0.001;
C2 = C1 0.0005;
datarcosI = data(9:end) ;
datarcosQ = data(9:end) ;
s0 = 2;%插值乘法器值
Detector_out = zeros(1,interplen);%误差检测输出
interp_outI = zeros(1,interplen
2);%插值filter输出;
interp_outQ = zeros(1,interplen * 2);
interp_outI(1) = datarcosI(2);
interp_outI(2) = datarcosI(4);
interp_outQ(1) = datarcosQ(2);
interp_outQ(2) = datarcosQ(4);

for i = 2 : interplen - 12

for k = 1 : 1
y_temp = q0 - w;%=============================
q(m) = q0;
if y_temp > 0
q0 = y_temp;
else
q0 = mod(y_temp,1);
mk = m;
uk = s0 q(m);
uu(j) = uk;
data1 = datarcosI(mk);
data2 = datarcosI(mk + 1);
interp_outI(j) = uk
data2 + (1 - uk) data1;
if mod(j,2) ~= 0
qoutI((j+1)/2) = interp_outI(j);
end
data1 = datarcosQ(mk);
data2 = datarcosQ(mk + 1);
interp_outQ(j) = uk
data2 + (1 - uk) data1;
if mod(j,2) ~= 0
qoutQ((j+1)/2) = interp_outQ(j);
end
j = j + 1;
end
m = m + 1;
end
Detector_out(i) = (interp_outI((i - 2)
2 + 2)) ((interp_outI((i - 1) 2 + 1)) - (interp_outI((i - 2)* 2 + 1)))...

               + (interp_outQ((i - 2)* 2 + 2)) * ((interp_outQ((i - 1)* 2 + 1)) - (interp_outQ((i - 2)* 2 + 1)));

w = w + (C1 (Detector_out(i) - Detector_out(i - 1)) + C2 Detector_out(i));
Wm(i) = w;
end
yout = (interp_outI + interp_outQ)/2/nsamp;
```

相关文章
|
3天前
|
机器学习/深度学习 资源调度 算法
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
|
4天前
|
算法 数据安全/隐私保护
泵浦光与斯托克斯光相遇耦合效应的matlab模拟与仿真
本程序使用MATLAB2022A模拟泵浦光与斯托克斯光在非线性光学材料中的耦合效应,基于拉曼散射原理。通过非线性薛定谔方程描述两者相互作用,实现能量转换与放大。核心代码展示了时间与距离上的光强变化,最终生成动态图像展示耦合过程。完整程序无水印,运行结果如附图所示。该仿真有助于理解非线性光学现象及其应用。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于sift变换的农田杂草匹配定位算法matlab仿真
本项目基于SIFT算法实现农田杂草精准识别与定位,运行环境为Matlab2022a。完整程序无水印,提供详细中文注释及操作视频。核心步骤包括尺度空间极值检测、关键点定位、方向分配和特征描述符生成。该算法通过特征匹配实现杂草定位,适用于现代农业中的自动化防控。
|
5天前
|
资源调度 算法 数据可视化
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
|
6天前
|
机器学习/深度学习 数据采集 算法
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
|
6天前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
|
7月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
285 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
7月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
151 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
171 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现