项目实践 | 基于YOLO-V5实现行人社交距离风险提示(文末获取完整源码)(一)

简介: 项目实践 | 基于YOLO-V5实现行人社交距离风险提示(文末获取完整源码)(一)

1、与YOLO V4的区别


Yolov4在Yolov3的基础上进行了很多的创新。比如输入端采用mosaic数据增强,Backbone上采用了CSPDarknet53Mish激活函数Dropblock等方式,Neck中采用了SPPFPN+PAN的结构,输出端则采用CIOU_LossDIOU_nms操作。因此Yolov4对Yolov3的各个部分都进行了很多的整合创新。这里给出YOLO V4的网络结构图:

Yolov5的结构其实和Yolov4的结构还是有一定的相似之处的,但也有一些不同,这里还是按照从整体到细节的方式,对每个板块进行讲解。这里给出YOLO V4的网络结构图:

image.png

通过Yolov5的网络结构图可以看到,依旧是把模型分为4个部分,分别是:输入端、Backbone、Neck、Prediction。

1.1、输入端的区别

1 Mosaic数据增强

Mosaic是参考CutMix数据增强的方式,但CutMix只使用了两张图片进行拼接,而Mosaic数据增强则采用了4张图片,随机缩放、随机裁剪、随机排布的方式进行拼接。

image.png

主要有几个优点:

  • 1、丰富数据集:随机使用4张图片,随机缩放,再随机分布进行拼接,大大丰富了检测数据集,特别是随机缩放增加了很多小目标,让网络的鲁棒性更好。
  • 2、减少GPU:可能会有人说,随机缩放,普通的数据增强也可以做,但作者考虑到很多人可能只有一个GPU,因此Mosaic增强训练时,可以直接计算4张图片的数据,使得Mini-batch大小并不需要很大,一个GPU就可以达到比较好的效果。

2 自适应锚框计算

在Yolov3、Yolov4中,训练不同的数据集时,计算初始锚框的值是通过单独的程序运行的。但Yolov5中将此功能嵌入到代码中,每次训练时,自适应的计算不同训练集中的最佳锚框值。

比如Yolov5在Coco数据集上初始设定的锚框:

image.png

3 自适应图片缩放

在常用的目标检测算法中,不同的图片长宽都不相同,因此常用的方式是将原始图片统一缩放到一个标准尺寸,再送入检测网络中。比如Yolo算法中常用416×416,608×608等尺寸,比如对下面800×600的图像进行变换。

image.png

但Yolov5代码中对此进行了改进,也是Yolov5推理速度能够很快的一个不错的trick。作者认为,在项目实际使用时,很多图片的长宽比不同。因此缩放填充后,两端的黑边大小都不同,而如果填充的比较多,则存在信息冗余,影响推理速度。

具体操作的步骤:

1 计算缩放比例

image.png

原始缩放尺寸是416×416,都除以原始图像的尺寸后,可以得到0.52,和0.69两个缩放系数,选择小的缩放系数0.52。

2 计算缩放后的尺寸

image.png

原始图片的长宽都乘以最小的缩放系数0.52,宽变成了416,而高变成了312。

3 计算黑边填充数值

image.png

将416-312=104,得到原本需要填充的高度。再采用numpy中np.mod取余数的方式,得到40个像素,再除以2,即得到图片高度两端需要填充的数值。

1.2、Backbone的区别

1 Focus结构

image.png

Focus结构,在Yolov3&Yolov4中并没有这个结构,其中比较关键是切片操作。比如右图的切片示意图,4×4×3的图像切片后变成3×3×12的特征图。以Yolov5s的结构为例,原始608×608×3的图像输入Focus结构,采用切片操作,先变成304×304×12的特征图,再经过一次32个卷积核的卷积操作,最终变成304×304×32的特征图。

需要注意的是:Yolov5s的Focus结构最后使用了32个卷积核,而其他三种结构,使用的数量有所增加,先注意下,后面会讲解到四种结构的不同点。

class Focus(nn.Module):
    # Focus wh information into c-space
    def __init__(self, c1, c2, k=1):
        super(Focus, self).__init__()
        self.conv = Conv(c1 * 4, c2, k, 1)
    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
        return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))

2 CSP结构

Yolov5与Yolov4不同点在于,Yolov4中只有主干网络使用了CSP结构,而Yolov5中设计了两种CSP结构,以Yolov5s网络为例,以CSP1_X结构应用于Backbone主干网络,另一种CSP2_X结构则应用于Neck中。

class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):  # ch_in, ch_out, kernel, stride, groups
        super(Conv, self).__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, k // 2, groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.LeakyReLU(0.1, inplace=True) if act else nn.Identity()
    def forward(self, x):
        return self.act(self.bn(self.conv(x)))
    def fuseforward(self, x):
        return self.act(self.conv(x))
class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super(Bottleneck, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2
    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class BottleneckCSP(nn.Module):
    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super(BottleneckCSP, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
        self.cv4 = Conv(c2, c2, 1, 1)
        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
        self.act = nn.LeakyReLU(0.1, inplace=True)
        self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
    def forward(self, x):
        y1 = self.cv3(self.m(self.cv1(x)))
        y2 = self.cv2(x)
        return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))

1.3、Neck的区别

Yolov5现在的Neck和Yolov4中一样,都采用FPN+PAN的结构,但在Yolov5刚出来时,只使用了FPN结构,后面才增加了PAN结构,此外网络中其他部分也进行了调整。

image.png

Yolov5和Yolov4的不同点在于,Yolov4的Neck中,采用的都是普通的卷积操作。而Yolov5的Neck结构中,采用借鉴CSPNet设计的CSP2结构,加强网络特征融合的能力。

1.4、输出端的区别

1 Bounding box损失函数

而Yolov4中采用CIOU_Loss作为目标Bounding box的损失。而Yolov5中采用其中的GIOU_Loss做Bounding box的损失函数。

image.png

image.png

def compute_loss(p, targets, model):  # predictions, targets, model
    ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor
    lcls, lbox, lobj = ft([0]), ft([0]), ft([0])
    tcls, tbox, indices, anchors = build_targets(p, targets, model)  # targets
    h = model.hyp  # hyperparameters
    red = 'mean'  # Loss reduction (sum or mean)
    # Define criteria
    BCEcls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']]), reduction=red)
    BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]), reduction=red)
    # class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
    cp, cn = smooth_BCE(eps=0.0)
    # focal loss
    g = h['fl_gamma']  # focal loss gamma
    if g > 0:
        BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
    # per output
    nt = 0  # targets
    for i, pi in enumerate(p):  # layer index, layer predictions
        b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
        tobj = torch.zeros_like(pi[..., 0])  # target obj
        nb = b.shape[0]  # number of targets
        if nb:
            nt += nb  # cumulative targets
            ps = pi[b, a, gj, gi]  # prediction subset corresponding to targets
            # GIoU
            pxy = ps[:, :2].sigmoid() * 2. - 0.5
            pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
            pbox = torch.cat((pxy, pwh), 1)  # predicted box
            giou = bbox_iou(pbox.t(), tbox[i], x1y1x2y2=False, GIoU=True)  # giou(prediction, target)
            lbox += (1.0 - giou).sum() if red == 'sum' else (1.0 - giou).mean()  # giou loss
            # Obj
            tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype)  # giou ratio
            # Class
            if model.nc > 1:  # cls loss (only if multiple classes)
                t = torch.full_like(ps[:, 5:], cn)  # targets
                t[range(nb), tcls[i]] = cp
                lcls += BCEcls(ps[:, 5:], t)  # BCE
            # Append targets to text file
            # with open('targets.txt', 'a') as file:
            #     [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
        lobj += BCEobj(pi[..., 4], tobj)  # obj loss
    lbox *= h['giou']
    lobj *= h['obj']
    lcls *= h['cls']
    bs = tobj.shape[0]  # batch size
    if red == 'sum':
        g = 3.0  # loss gain
        lobj *= g / bs
        if nt:
            lcls *= g / nt / model.nc
            lbox *= g / nt
    loss = lbox + lobj + lcls
    return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()

2 NMS非极大值抑制

Yolov4在DIOU_Loss的基础上采用DIOU_NMS的方式,而Yolov5中采用加权NMS的方式。可以看出,采用DIOU_NMS,下方中间箭头的黄色部分,原本被遮挡的摩托车也可以检出。

image.png

在同样的参数情况下,将NMS中IOU修改成DIOU_NMS。对于一些遮挡重叠的目标,确实会有一些改进。

相关文章
|
8月前
|
机器学习/深度学习 编解码 API
深度学习+不良身体姿势检测+警报系统+代码+部署(姿态识别矫正系统)
深度学习+不良身体姿势检测+警报系统+代码+部署(姿态识别矫正系统)
|
8月前
|
机器学习/深度学习 算法 计算机视觉
基于深度学习的停车位关键点检测系统(代码+原理)
基于深度学习的停车位关键点检测系统(代码+原理)
|
7月前
|
机器学习/深度学习 数据格式 索引
【YOLOv8新玩法】姿态评估解锁找圆心位置
【YOLOv8新玩法】姿态评估解锁找圆心位置
96 0
|
7月前
|
机器学习/深度学习 算法 安全
基于YOLOv8深度学习的危险区域人员闯入检测与报警系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、区域闯入
基于YOLOv8深度学习的危险区域人员闯入检测与报警系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、区域闯入
|
7月前
|
机器学习/深度学习 存储 算法
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
|
8月前
|
机器学习/深度学习 监控 算法
【传知代码】高速公路车辆速度检测软件-论文复现
该项目是高速公路车辆速度检测软件,融合了无人机、计算机视觉(YOLOv8)和机器学习,用于交通监控和数据收集。它通过无人机航拍获取车辆信息,使用Bytetrack进行跟踪,SG滤波器处理数据,计算速度和加速度,并将数据存储在Excel中。软件包含检测器、跟踪器和注册表组件,可在Pycharm环境中运行。部署时需配置相关依赖,通过主程序`main.py`启动,用户需标定参考距离、ROI和坐标系。随着技术进步,此类系统有望在交通管理中发挥更大作用。参考文献包括YOLOv8和ByteTrack的相关研究。源码和详情见原文链接。
109 0
【传知代码】高速公路车辆速度检测软件-论文复现
|
7月前
|
机器学习/深度学习 开发者 计算机视觉
【YOLOv8新玩法】姿态评估寻找链接切割点
【YOLOv8新玩法】姿态评估寻找链接切割点
52 0
|
8月前
|
人工智能
姿态识别+康复训练矫正+代码+部署(AI 健身教练来分析深蹲等姿态)-2
姿态识别+康复训练矫正+代码+部署(AI 健身教练来分析深蹲等姿态)-2
|
8月前
|
机器学习/深度学习 人工智能 算法
姿态识别+康复训练矫正+代码+部署(AI 健身教练来分析深蹲等姿态)-1
姿态识别+康复训练矫正+代码+部署(AI 健身教练来分析深蹲等姿态)-1
|
8月前
|
人工智能 算法 TensorFlow
基于AidLux的工业视觉少样本缺陷检测实战
基于AidLux的工业视觉少样本缺陷检测实战
86 0