基于深度学习的停车位关键点检测系统(代码+原理)

简介: 基于深度学习的停车位关键点检测系统(代码+原理)

摘要:

DMPR-PS是一种基于深度学习的停车位检测系统,旨在实时监测和识别停车场中的停车位。该系统利用图像处理和分析技术,通过摄像头获取停车场的实时图像,并自动检测停车位的位置和状态。本文详细介绍了DMPR-PS系统的算法原理、创新点和实验结果,并对其性能进行了评估。


算法创新:

DMPR-PS系统的算法创新主要体现在以下几个方面:

  1. 深度学习模型:DMPR-PS系统采用了深度学习模型来进行停车位的检测。通过大规模数据集的训练,该模型可以自动学习停车位的特征,并准确地进行检测和分类。

2.多尺度检测:为了应对不同大小的停车位,DMPR-PS系统使用了多尺度检测策略。通过在不同尺度下进行检测,可以提高系统对各种大小停车位的检测准确率。


3.实时性能:DMPR-PS系统具有较高的实时性能。它能够快速处理实时视频流,并在短时间内完成停车位的检测和识别,满足实时监测的需求。

4c7046907c5d9b36aaa7e721f4c13d18_17d4dd3255d04f07baee30a42b220208.png

实验结果与结论:

通过对多个停车场场景的实验测试,DMPR-PS系统展现了良好的性能。实验结果表明,该系统在检测准确率和实时性能方面都具有较高的水平。


代码运行

要求:

python版本3.6
pytorch版本1.4+

其他要求:

pip install -r requirements.txt
gcn-parking-slot

预训练模型

可以通过以下链接下载两个预训练模型。

链接  代码  描述
Model0  bc0a  使用ps2.0子集进行训练,如[1]所述。
Model1  pgig  使用完整的ps2.0数据集进行训练。

准备数据

可以在此处找到原始的ps2.0数据和标签。提取并组织如下:

├── datasets
│   └── parking_slot
│       ├── annotations
│       ├── ps_json_label 
│       ├── testing
│       └── training

训练和测试

将当前目录导出到PYTHONPATH:

export PYTHONPATH=`pwd`

演示

python3 tools/demo.py -c config/ps_gat.yaml -m cache/ps_gat/100/models/checkpoint_epoch_200.pth

训练

python3 tools/train.py -c config/ps_gat.yaml
• 1


测试

python3 tools/test.py -c config/ps_gat.yaml -m cache/ps_gat/100/models/checkpoint_epoch_200.pth


代码

import cv2
import time
import torch
import pprint
import numpy as np
from pathlib import Path

from psdet.utils.config import get_config
from psdet.utils.common import get_logger
from psdet.models.builder import build_model


def draw_parking_slot(image, pred_dicts):
    slots_pred = pred_dicts['slots_pred']

    width = 512
    height = 512
    VSLOT_MIN_DIST = 0.044771278151623496
    VSLOT_MAX_DIST = 0.1099427457599304
    HSLOT_MIN_DIST = 0.15057789144568634
    HSLOT_MAX_DIST = 0.44449496544202816

    SHORT_SEPARATOR_LENGTH = 0.199519231
    LONG_SEPARATOR_LENGTH = 0.46875
    junctions = []
    for j in range(len(slots_pred[0])):
        position = slots_pred[0][j][1]
        p0_x = width * position[0] - 0.5
        p0_y = height * position[1] - 0.5
        p1_x = width * position[2] - 0.5
        p1_y = height * position[3] - 0.5
        vec = np.array([p1_x - p0_x, p1_y - p0_y])
        vec = vec / np.linalg.norm(vec)
        distance =( position[0] - position[2] )**2 + ( position[1] - position[3] )**2 
        
        if VSLOT_MIN_DIST <= distance <= VSLOT_MAX_DIST:
            separating_length = LONG_SEPARATOR_LENGTH
        else:
            separating_length = SHORT_SEPARATOR_LENGTH
        
        p2_x = p0_x + height * separating_length * vec[1]
        p2_y = p0_y - width * separating_length * vec[0]
        p3_x = p1_x + height * separating_length * vec[1]
        p3_y = p1_y - width * separating_length * vec[0]
        p0_x = int(round(p0_x))
        p0_y = int(round(p0_y))
        p1_x = int(round(p1_x))
        p1_y = int(round(p1_y))
        p2_x = int(round(p2_x))
        p2_y = int(round(p2_y))
        p3_x = int(round(p3_x))
        p3_y = int(round(p3_y))
        cv2.line(image, (p0_x, p0_y), (p1_x, p1_y), (255, 0, 0), 2)
        cv2.line(image, (p0_x, p0_y), (p2_x, p2_y), (255, 0, 0), 2)
        cv2.line(image, (p1_x, p1_y), (p3_x, p3_y), (255, 0, 0), 2)

        #cv2.circle(image, (p0_x, p0_y), 3,  (0, 0, 255), 4)
        junctions.append((p0_x, p0_y))
        junctions.append((p1_x, p1_y))
    for junction in junctions:
        cv2.circle(image, junction, 3,  (0, 0, 255), 4)
    
    return image
    
def main():

    cfg = get_config()
    logger = get_logger(cfg.log_dir, cfg.tag)
    logger.info(pprint.pformat(cfg))

    model = build_model(cfg.model)
    logger.info(model)
    
    image_dir = Path(cfg.data_root) / 'testing' / 'outdoor-normal daylight'
    display = False

    # load checkpoint
    model.load_params_from_file(filename=cfg.ckpt, logger=logger, to_cpu=False)
    model.cuda()
    model.eval()
    
    if display:
        car = cv2.imread('images/car.png')
        car = cv2.resize(car, (512, 512))

    with torch.no_grad():

        for img_path in image_dir.glob('*.jpg'):
            img_name = img_path.stem
            
            data_dict = {} 
            image  = cv2.imread(str(img_path))
            image0 = cv2.resize(image, (512, 512))
            image = image0/255.

            data_dict['image'] = torch.from_numpy(image).float().permute(2, 0, 1).unsqueeze(0).cuda()

            start_time = time.time()
            pred_dicts, ret_dict = model(data_dict)
            sec_per_example = (time.time() - start_time)
            print('Info speed: %.4f second per example.' % sec_per_example)

            if display:
                image = draw_parking_slot(image0, pred_dicts)
                image[145:365, 210:300] = 0
                image += car
                cv2.imshow('image',image.astype(np.uint8))
                cv2.waitKey(50)
                
                save_dir = Path(cfg.output_dir) / 'predictions'
                save_dir.mkdir(parents=True, exist_ok=True)
                save_path = save_dir / ('%s.jpg' % img_name)
                cv2.imwrite(str(save_path), image)
    if display:
        cv2.destroyAllWindows()

if __name__ == '__main__':
    main()


结论

DMPR-PS系统是一种基于深度学习的停车位检测系统,通过创新的算法设计和实时性能优化,可以有效地监测和识别停车场中的停车位。该系统在提高停车场资源利用率和管理效率方面具有重要的应用价值。

相关文章
|
20天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
217 55
|
26天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
115 5
|
2天前
|
机器学习/深度学习 运维 监控
利用深度学习进行系统健康监控:智能运维的新纪元
利用深度学习进行系统健康监控:智能运维的新纪元
53 30
|
30天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
155 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
88 16
|
1月前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习的果蔬识别系统实现
果蔬识别系统,主要开发语言为Python,基于TensorFlow搭建ResNet卷积神经网络算法模型,通过对12种常见的果蔬('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜')图像数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django框架搭建Web网页端可视化操作界面,以下为项目实现介绍。
39 4
基于Python深度学习的果蔬识别系统实现
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
深入探索深度学习中的兼容性函数:从原理到实践
深入探索深度学习中的兼容性函数:从原理到实践
39 3
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
揭秘深度学习中的兼容性函数:原理、类型与应用
揭秘深度学习中的兼容性函数:原理、类型与应用
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
探索深度学习与计算机视觉的融合:构建高效图像识别系统
探索深度学习与计算机视觉的融合:构建高效图像识别系统
55 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的注意力机制:原理、应用与未来展望
探索深度学习中的注意力机制:原理、应用与未来展望