姿态识别+康复训练矫正+代码+部署(AI 健身教练来分析深蹲等姿态)-1

简介: 姿态识别+康复训练矫正+代码+部署(AI 健身教练来分析深蹲等姿态)-1

姿态识别+康复训练矫正(AI 健身教练姿态分析)


本文旨在构建一个 AI 健身教练,帮助判断姿态标准与否,并且矫正姿态!无论您是初学者还是专业人士,它都可以帮助您无缝地进行深蹲。为了完成这项任务,我们可以利用基于深度学习的人类姿态估计算法的强大功能。


姿态估计

使用检测器,管道首先定位帧内的人物/姿势感兴趣区域 (ROI)。跟踪器随后使用 ROI 裁剪的帧作为输入来预测 ROI 中的姿态地标和分割掩码。


姿势分析的正面和侧视图的直觉

  • 在设计一个应用程序来分析各种健身锻炼时,人们可能会好奇地执行各种计算,同时牢记相机对物体(人)的视野。
  • 使用正面视图,我们可以访问左侧和右侧,因此可以利用各种地标点的坡度和角度,例如膝臀线和膝臀线之间的角度等。这些信息可能有助于分析头顶推举、侧板支撑、仰卧起坐、卷曲等练习。
  • 我们可以使用侧视图来更好地估计有关垂直或水平的各种倾斜度。这些信息有助于分析硬拉、俯卧撑、深蹲、俯卧撑等运动。
  • 由于我们正在分析深蹲和所有关于垂直方向适当倾斜度的重要计算,因此我们选择了侧视图。
  • 为确保健康的生活方式,罗马尼亚主动向进行 20 次深蹲的人提供免费巴士票。看看这个Instagram帖子!

c25eb3cd79e84d01b34c0eb77defcfef.png

姿势构建 AI 健身教练来分析深蹲

下图描述了我们的应用程序所需的地标。

我们将考虑髋-膝、膝-踝肩-髋线与垂直线的角度,以计算状态(在后续部分中解释)并执行适当的反馈消息。如下图所示。

用于姿势分析的正面和侧视图的直觉

在设计一个应用程序来分析各种健身锻炼时,人们可能会好奇地执行各种计算,同时牢记相机对物体(人)的视野。


使用正面视图,我们可以访问左侧和右侧,因此可以利用各种地标点的坡度和角度,例如膝臀线和膝臀线之间的角度等。这些信息可能有助于分析头顶推举、侧板支撑、仰卧起坐、卷曲等练习。


我们可以使用侧视图来更好地估计有关垂直或水平的各种倾斜度。这些信息有助于分析硬拉、俯卧撑、深蹲、俯卧撑等运动。


由于我们正在分析深蹲和所有关于垂直方向适当倾斜度的重要计算,因此我们选择了侧视图。


为确保健康的生活方式,罗马尼亚主动向进行 20 次深蹲的人提供免费巴士票。看看这个Instagram帖子!

在Instagram上查看此帖子

Алина Бжолка (@alinabzholkina) 分享的帖子


使用 MediaPipe 姿势构建 AI 健身教练来分析深蹲

下图描述了我们的应用程序所需的地标。

我们将考虑髋-膝、膝-踝肩-髋线与垂直线的角度,以计算状态(在后续部分中解释)并执行适当的反馈消息。如下图所示。


  • 此外,我们将计算偏移角度(鼻子和肩膀所占的角度),并发出适当的警告,以保持良好的侧视图。
  • 此外,我们还将考虑计算不活动的时间,根据这些时间,正确和不正确的深蹲计数器将被重置。
  • 该应用程序还将提供两种模式:初学者和专业;人们可以选择其中任何一个并开始无缝地进行深蹲,无论他是初学者还是专家。
  • 人体姿态估计是计算机视觉中最令人兴奋的研究领域之一。它在广泛的应用中具有重要意义。我们可以用它来构建一个简单而令人兴奋的应用程序来[分析不良的坐姿]


姿态识别+康复训练矫正+代码+部署(AI 健身教练来分析深蹲等姿态)-2

https://developer.aliyun.com/article/1446344?spm=a2c6h.13148508.setting.24.68a34f0egwu157

相关文章
|
14天前
|
机器学习/深度学习 存储 人工智能
【AI系统】感知量化训练 QAT
本文介绍感知量化训练(QAT)流程,旨在减少神经网络从FP32量化至INT8时的精度损失。通过在模型中插入伪量化节点(FakeQuant)模拟量化误差,并在训练中最小化这些误差,使模型适应量化环境。文章还探讨了伪量化节点的作用、正向与反向传播处理、TensorRT中的QAT模型高效推理,以及QAT与PTQ的对比,提供了实践技巧,如从良好校准的PTQ模型开始、采用余弦退火学习率计划等。
53 2
【AI系统】感知量化训练 QAT
|
14天前
|
机器学习/深度学习 存储 人工智能
【AI系统】训练后量化与部署
本文详细介绍了训练后量化技术,涵盖动态和静态量化方法,旨在将模型权重和激活从浮点数转换为整数,以优化模型大小和推理速度。通过KL散度等校准方法和量化粒度控制,文章探讨了如何平衡模型精度与性能,同时提供了端侧量化推理部署的具体实现步骤和技术技巧。
40 1
【AI系统】训练后量化与部署
|
5天前
|
人工智能 小程序 API
【一步步开发AI运动小程序】十七、如何识别用户上传视频中的人体、运动、动作、姿态?
【云智AI运动识别小程序插件】提供人体、运动、姿态检测的AI能力,支持本地原生识别,无需后台服务,具有速度快、体验好、易集成等优点。本文介绍如何使用该插件实现用户上传视频的运动识别,包括视频解码抽帧和人体识别的实现方法。
|
10天前
|
人工智能 数据挖掘
AI长脑子了?LLM惊现人类脑叶结构并有数学代码分区,MIT大牛新作震惊学界!
麻省理工学院的一项新研究揭示了大型语言模型(LLM)内部概念空间的几何结构,与人脑类似。研究通过分析稀疏自编码器生成的高维向量,发现了概念空间在原子、大脑和星系三个层次上的独特结构,为理解LLM的内部机制提供了新视角。论文地址:https://arxiv.org/abs/2410.19750
51 12
|
13天前
|
人工智能 PyTorch 测试技术
【AI系统】并行训练基本介绍
分布式训练通过将任务分配至多个节点,显著提升模型训练效率与精度。本文聚焦PyTorch2.0中的分布式训练技术,涵盖数据并行、模型并行及混合并行等策略,以及DDP、RPC等核心组件的应用,旨在帮助开发者针对不同场景选择最合适的训练方式,实现高效的大模型训练。
50 8
|
17天前
|
人工智能 文字识别 API
OpenSearch & AI 开放平台,实现0代码图片搜索!
本文主要介绍了如何利用阿里云的 OpenSearch 和 AI 搜索开放平台来构建一个无需编写代码就能完成的图片搜索功能。
63 12
|
18天前
|
数据采集 人工智能 小程序
【一步步开发AI运动小程序】十、姿态动作相似度比较
本文介绍如何利用“云智AI运动识别小程序插件”开发AI运动小程序,重点讲解姿态动作相似度比较功能的运用,包括样本动作帧的采集和姿态相似度的计算方法,以及在组合运动中的应用实例。
|
11天前
|
人工智能 搜索推荐 安全
数百名研发人员用通义灵码,33%新增代码由AI生成,信也科技研发模式焕新升级
目前,信也科技数百名研发人员正在使用通义灵码,周活跃用户占比70%,新增代码中有33%由通义灵码编写,整体研发效率提升了11%,真正实现了数百研发人员开发效能的全面提升。
|
机器学习/深度学习 人工智能 开发者
资源 | AI领域最优论文+代码查找神器:966个ML任务、8500+论文任君挑选!
查找论文及对应源码的神器 Papers With Code 刚刚推出了最新版本,可以用图形界面查找你想要的 SOTA 实现,从应用领域到具体任务再到实现代码一步到位。
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
52 10
下一篇
DataWorks