AudioLDM一作解读:文本生成高质量音频,单GPU即可

简介: AudioLDM一作解读:文本生成高质量音频,单GPU即可



文本驱动的生成模型在图像和视频领域已经取得了显著成果,例如大火的 Stable Diffusion,可以生成大片级别的图像,但是在音频领域,技术上的进展还是比较局限的。

文本到音频的生成模型对许多和创作相关的行业都会产生积极的作用,例如游戏开发者或者电影配音人员可以借助此项技术,根据特定的要求去生成声音,而不是在庞大的音频数据库中搜寻,从而加快生产效率。文本到音频的生成模型也可以为未来自动内容创作提供文本和声音之间的桥梁。

然而,以往文本到音频的研究都存在生成质量有限、计算成本高的问题。

针对上述困难,来自英国萨里大学等机构的研究者提出了 AudioLDM,一个基于去噪扩散隐式模型(Latent Diffusion Models, LDMs)和对比学习 (Contrastive Learning) 的框架。AudioLDM 可以在仅有音频数据的情况下达到比使用音频 - 文本数据对相同或者更好的效果。作者提出采用自监督的方法去训练 LDMs。具体而言,AudioLDM 使用对比学习将文本和音频两个模态对齐到一个隐空间中,在训练 LDMs 的时候使用音频自身的表征去生成音频本身,并在测试时使用文本的表征。这种做法比较好的缓解了此任务对音频 - 文本数据对的依赖。总结来说,AudioLDM 具备以下几点优势:

  • 达到了目前最好的文本生成音频的效果,并且在核心模块(扩散模型)优化阶段不需要文本数据。
  • 计算资源消耗低,单块 3090 GPU 三天内可以完成在 AudioCaps 数据集上的模型训练。
  • 模型在不需要额外训练的情况下,可以对任意声音进行音色风格转换,声音空白填充和音频超分。


机器之心最新一期线上分享邀请到了该研究的作者之一、英国萨里大学刘濠赫博士,为大家解读他们近期的工作 AudioLDM。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
Baichuan-Omni-1.5:百川智能开源全模态理解与生成模型,支持文本、图像、音频和视频的多模态输入和输出
Baichuan-Omni-1.5 是百川智能开源的全模态理解模型,支持文本、图像、音频和视频的多模态输入和输出,显著提升多模态交互体验。
123 22
Baichuan-Omni-1.5:百川智能开源全模态理解与生成模型,支持文本、图像、音频和视频的多模态输入和输出
|
7天前
|
人工智能 语音技术
首个可保留情感的音频LLM!Meta重磅开源7B-Spirit LM,一网打尽音频+文本多模态任务
Meta AI 研究团队提出了一种名为 SpiRit-LM 的新型多模态语言模型,该模型能够处理文本和音频,实现两者无缝融合。SpiRit-LM 通过“交织”方法训练,具备多模态融合、情感保留和多任务学习能力,在自动语音识别、文本转语音等任务上表现出色。它有 Base 和 Expressive 两个版本,后者能更好地捕捉情感表达。研究团队在多个基准上测试了其性能,并探索了其在语音助手、内容创作、教育和音频编辑等领域的应用前景。
18 1
|
2月前
|
人工智能 数据处理 语音技术
LatentLM:微软联合清华大学推出的多模态生成模型,能够统一处理和生成图像、文本、音频和语音合成
LatentLM是由微软研究院和清华大学联合推出的多模态生成模型,能够统一处理离散和连续数据,具备高性能图像生成、多模态大型语言模型集成等功能,展现出卓越的多模态任务处理能力。
112 29
LatentLM:微软联合清华大学推出的多模态生成模型,能够统一处理和生成图像、文本、音频和语音合成
|
2月前
|
存储 人工智能 文字识别
Megrez-3B-Omni:无问芯穹开源最强端侧全模态模型,支持理解图像、音频和文本三种模态数据
Megrez-3B-Omni 是无问芯穹开源的端侧全模态理解模型,支持图像、音频和文本三种模态数据的处理,具备高精度和高推理速度,适用于多种应用场景。
127 19
Megrez-3B-Omni:无问芯穹开源最强端侧全模态模型,支持理解图像、音频和文本三种模态数据
|
1月前
|
数据采集 存储 Serverless
5 分钟复刻你的声音,一键实现 GPT-Sovits 模型部署
想象一下,只需简单几步操作,就能生成逼真的语音效果,无论是为客户服务还是为游戏角色配音,都能轻松实现。GPT-Sovits 模型,其高效的语音生成能力为实现自然、流畅的语音交互提供了强有力的技术支持。本文将详细介绍如何利用函数计算平台部署 GPT-Sovits 模型,以构建一个高效、可扩展的 AI 语音交互系统。通过这一部署方案,开发者和企业能够快速集成语音合成功能,实现从文本到语音的无缝转换,进而推动智能语音应用的创新和发展。
484 11
|
6月前
|
自然语言处理 语音技术 开发者
ChatTTS超真实自然的语音合成模型
ChatTTS超真实自然的语音合成模型
207 3
|
9月前
|
人工智能 自然语言处理 语音技术
音频提取字幕开源模型-whisper
音频提取字幕开源模型-whisper
215 0
|
机器学习/深度学习 数据采集 人工智能
本地训练,立等可取,30秒音频素材复刻霉霉讲中文音色基于Bert-VITS2V2.0.2
之前我们[使用Bert-VITS2V2.0.2版本对现有的原神数据集进行了本地训练](https://v3u.cn/a_id_330),但如果克隆对象脱离了原神角色,我们就需要自己构建数据集了,事实上,深度学习模型的性能和泛化能力都依托于所使用的数据集的质量和多样性,本次我们在本地利用Bert-VITS2V2.0.2对霉霉讲中文的音色进行克隆实践。
本地训练,立等可取,30秒音频素材复刻霉霉讲中文音色基于Bert-VITS2V2.0.2
|
弹性计算 自然语言处理 应用服务中间件
GPU实验室-AIGC文本生成3D模型
自多态模型GPT-4发布后,AIGC(AI Generated Content,AI生成内容)时代正扑面而来,从单一的文字文本,演化到更丰富的图片、视频、音频、3D模型等。本文将基于HRN人脸重建模型,以人脸头像作为输入,利用层次化表征实现快速人脸几何、纹理恢复,指导您如何实现使用文本生成高精度3D模型。
|
API 语音技术 Python
轻声低语,藏在光芒下的语音转文字模型Whisper
轻声低语,藏在光芒下的语音转文字模型Whisper
1366 0

热门文章

最新文章