【即插即用】Triplet Attention机制让Channel和Spatial交互更加丰富(附开源代码)

简介: 【即插即用】Triplet Attention机制让Channel和Spatial交互更加丰富(附开源代码)

1、简介和相关方法


最近许多工作提出使用Channel Attention或Spatial Attention,或两者结合起来提高神经网络的性能。这些Attention机制通过建立Channel之间的依赖关系或加权空间注意Mask有能力改善由标准CNN生成的特征表示。学习注意力权重背后是让网络有能力学习关注哪里,并进一步关注目标对象。这里列举一些具有代表的工作:

1、SENet(Squeeze and Excite module)

2、CBAM(Convolutional Block Attention Module)

3、BAM(Bottleneck Attention Module)

4、Grad-CAM

5、Grad-CAM++

6、-Nets(Double Attention Networks)

7、NL(Non-Local blocks)

8、GSoP-Net(Global Second order Pooling Networks)

9、GC-Net(Global Context Networks)

10、CC-Net(Criss-Cross Networks)

11、SPNet

等等方法(这些方法都值得大家去学习和调研,说不定会给你的项目带来意想不到的效果)。

以上大多数方法都有明显的缺点(Cross-dimension),Triplet Attention解决了这些缺点。Triplet Attention模块旨在捕捉Cross-dimension交互,从而能够在一个合理的计算开销内(与上述方法相比可以忽略不计)提供显著的性能收益。


2、本文方法


2.1、分析

本文的目标是研究如何在不涉及任何维数降低的情况下建立廉价但有效的通道注意力模型。Triplet Attention不像CBAM和SENet需要一定数量的可学习参数来建立通道间的依赖关系,本文提出了一个几乎无参数的注意机制来建模通道注意和空间注意,即Triplet Attention。

2.2、Triplet Attention

所提出的Triplet Attention见下图所示。顾名思义,Triplet Attention由3个平行的Branch组成,其中两个负责捕获通道C和空间H或W之间的跨维交互。最后一个Branch类似于CBAM,用于构建Spatial Attention。最终3个Branch的输出使用平均进行聚合。

1、Cross-Dimension Interaction

传统的计算通道注意力的方法涉及计算一个权值,然后使用权值统一缩放这些特征图。但是在考虑这种方法时,有一个重要的缺失。通常,为了计算这些通道的权值,输入张量在空间上通过全局平均池化分解为一个像素。这导致了空间信息的大量丢失,因此在单像素通道上计算注意力时,通道维数和空间维数之间的相互依赖性也不存在。

虽然后期提出基于Spatial和Channel的CBAM模型缓解了空间相互依赖的问题,但是依然存在一个问题,即,通道注意和空间注意是分离的,计算是相互独立的。基于建立空间注意力的方法,本文提出了跨维度交互作用(cross dimension interaction)的概念,通过捕捉空间维度和输入张量通道维度之间的交互作用,解决了这一问题。

这里是通过三个分支分别捕捉输入张量的(C, H),(C, W)和(H, W)维间的依赖关系来引入Triplet Attention中的跨维交互作用。

2、Z-pool

Z-pool层负责将C维度的Tensor缩减到2维,将该维上的平均汇集特征和最大汇集特征连接起来。这使得该层能够保留实际张量的丰富表示,同时缩小其深度以使进一步的计算量更轻。可以用下式表示:

class ChannelPool(nn.Module):
    def forward(self, x):
        return torch.cat((torch.max(x,1)[0].unsqueeze(1), torch.mean(x,1).unsqueeze(1)), dim=11)

3、Triplet Attention

给定一个输入张量,首先将其传递到Triplet Attention模块中的三个分支中。

在第1个分支中,在H维度和C维度之间建立了交互:

为了实现这一点,输入张量沿H轴逆时针旋转90°。这个旋转张量表示为的形状为(W×H×C),再然后经过Z-Pool后的张量的shape为(2×H×C),然后,通过内核大小为k×k的标准卷积层,再通过批处理归一化层,提供维数(1×H×C)的中间输出。然后,通过将张量通过sigmoid来生成的注意力权值。在最后输出是沿着H轴进行顺时针旋转90°保持和输入的shape一致。

在第2个分支中,在C维度和W维度之间建立了交互:

为了实现这一点,输入张量沿W轴逆时针旋转90°。这个旋转张量表示为的形状为(H×C×W),再然后经过Z-Pool后的张量的shape为(2×C×W ),然后,通过内核大小为k×k的标准卷积层,再通过批处理归一化层,提供维数(1×C×W)的中间输出。然后,通过将张量通过sigmoid来生成的注意力权值。在最后输出是沿着W轴进行顺时针旋转90°保持和输入的shape一致。

在第3个分支中,在H维度和W维度之间建立了交互:

输入张量的通道通过Z-pool将变量简化为2。将这个形状的简化张量(2×H×W)简化后通过核大小k定义的标准卷积层,然后通过批处理归一化层。输出通过sigmoid激活层生成形状为(1×H×W)的注意权值,并将其应用于输入,得到结果。然后通过简单的平均将3个分支产生的精细张量(C×H×W)聚合在一起。

**最终输出的Tensor:

class BasicConv(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True, bias=False):
        super(BasicConv, self).__init__()
        self.out_channels = out_planes
        self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)
        self.bn = nn.BatchNorm2d(out_planes,eps=1e-5, momentum=0.01, affine=True) if bn else None
        self.relu = nn.ReLU() if relu else None
    def forward(self, x):
        x = self.conv(x)
        if self.bn is not None:
            x = self.bn(x)
        if self.relu is not None:
            x = self.relu(x)
        return x
class ChannelPool(nn.Module):
    def forward(self, x):
        return torch.cat( (torch.max(x,1)[0].unsqueeze(1), torch.mean(x,1).unsqueeze(1)), dim=1 )
class SpatialGate(nn.Module):
    def __init__(self):
        super(SpatialGate, self).__init__()
        kernel_size = 7
        self.compress = ChannelPool()
        self.spatial = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size-1) // 2, relu=False)
    def forward(self, x):
        x_compress = self.compress(x)
        x_out = self.spatial(x_compress)
        scale = torch.sigmoid_(x_out) 
        return x * scale
class TripletAttention(nn.Module):
    def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max'], no_spatial=False):
        super(TripletAttention, self).__init__()
        self.ChannelGateH = SpatialGate()
        self.ChannelGateW = SpatialGate()
        self.no_spatial=no_spatial
        if not no_spatial:
            self.SpatialGate = SpatialGate()
    def forward(self, x):
        x_perm1 = x.permute(0,2,1,3).contiguous()
        x_out1 = self.ChannelGateH(x_perm1)
        x_out11 = x_out1.permute(0,2,1,3).contiguous()
        x_perm2 = x.permute(0,3,2,1).contiguous()
        x_out2 = self.ChannelGateW(x_perm2)
        x_out21 = x_out2.permute(0,3,2,1).contiguous()
        if not self.no_spatial:
            x_out = self.SpatialGate(x)
            x_out = (1/3)*(x_out + x_out11 + x_out21)
        else:
            x_out = (1/2)*(x_out11 + x_out21)
        return x_out

4、Complexity Analysis

通过与其他标准注意力机制的比较,验证了Triplet Attention的效率,C为该层的输入通道数,r为MLP在计算通道注意力时瓶颈处使用的缩减比,用于2D卷积的核大小用k表示,k<<<C。


3、实验结果


3.1、图像分类实验

3.2、目标检测实验

3.3、消融实验

3.4、HeatMap输出对比


4、总结


在这项工作中提出了一个新的注意力机制Triplet Attention,它抓住了张量中各个维度特征的重要性。Triplet Attention使用了一种有效的注意计算方法,不存在任何信息瓶颈。实验证明,Triplet Attention提高了ResNet和MobileNet等标准神经网络架构在ImageNet上的图像分类和MS COCO上的目标检测等任务上的Baseline性能,而只引入了最小的计算开销。是一个非常不错的即插即用的注意力模块。

相关文章
|
7月前
|
机器学习/深度学习 网络架构 计算机视觉
YOLOv5改进有效涨点系列->适合多种检测场景的BiFormer注意力机制(Bi-level Routing Attention)
YOLOv5改进有效涨点系列->适合多种检测场景的BiFormer注意力机制(Bi-level Routing Attention)
341 0
|
5月前
|
机器学习/深度学习 Serverless 计算机视觉
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强
|
1月前
|
机器学习/深度学习 测试技术 计算机视觉
【YOLOv11改进 - 注意力机制】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块
【YOLOv11改进 - 注意力机制】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块
【YOLOv11改进 - 注意力机制】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块
|
1月前
|
机器学习/深度学习 编解码 算法
【YOLOv11改进 - 注意力机制】MLCA(Mixed local channel attention):混合局部通道注意力
【YOLOv11改进 - 注意力机制】MLCA(Mixed local channel attention):混合局部通道注意力本项目提出了一种轻量级的 Mixed Local Channel Attention (MLCA) 模块,结合通道信息和空间信息,提升网络表达效果。基于此模块,开发了 MobileNet-Attention-YOLO (MAY) 算法,在 Pascal VOC 和 SMID 数据集上表现优异,mAP 分别提高了 1.0% 和 1.5%。MLCA 通过局部池化、一维卷积和信息融合,有效捕获局部和全局信息。项目代码和详细配置可在 GitHub 和 CSDN 获取。
|
5月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 注意力机制】ECA(Efficient Channel Attention):高效通道注意 模块,降低参数量
YOLO目标检测专栏聚焦模型创新与实战,介绍了一种高效通道注意力模块(ECA),用于提升CNN性能。ECA仅用少量参数实现显著性能增益,避免了维度缩减,通过1D卷积进行局部跨通道交互。代码实现展示了一个ECA层的结构,该层在多种任务中展现优秀泛化能力,同时保持低模型复杂性。论文和代码链接分别指向arXiv与GitHub。更多详情可查阅CSDN博主shangyanaf的相关文章。
|
5月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv10改进-注意力机制】HAT(Hybrid Attention Transformer,)混合注意力机制
YOLOv10专栏介绍了一种名为HAT的新方法,旨在改善Transformer在图像超分辨率中的表现。HAT结合通道和窗口注意力,激活更多像素并增强跨窗口信息交互。亮点包括:1) 更多像素激活,2) 有效跨窗口信息聚合,3) 任务特定的预训练策略。HAT模型包含浅层特征提取、深层特征提取和图像重建阶段。提供的代码片段展示了HAT类的定义,参数包括不同层的深度、注意力头数量、窗口大小等。欲了解更多详情和配置,请参考给定链接。
|
6月前
|
机器学习/深度学习 算法 计算机视觉
【YOLOv8改进】CPCA(Channel prior convolutional attention)中的通道注意力,增强特征表征能力 (论文笔记+引入代码)
该专栏聚焦YOLO目标检测的创新改进与实战,介绍了一种针对医学图像分割的通道优先卷积注意力(CPCA)方法。CPCA结合通道和空间注意力,通过多尺度深度卷积提升性能。提出的CPCANet网络在有限计算资源下,于多个数据集上展现优越分割效果。代码已开源。了解更多详情,请访问提供的专栏链接。
|
6月前
|
测试技术 计算机视觉
【YOLOv8改进】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块 (论文笔记+引入代码)
YOLO目标检测专栏介绍了大可分卷积核注意力模块LSKA,用于解决VAN中大卷积核效率问题。LSKA通过分解2D卷积为1D卷积降低计算复杂度和内存占用,且使模型关注形状而非纹理,提高鲁棒性。在多种任务和数据集上,LSKA表现优于ViTs和ConvNeXt,代码可在GitHub获取。基础原理包括LSKA的卷积核分解设计和计算效率优化。示例展示了LSKA模块的实现。更多详情及配置参见相关链接。
|
6月前
|
机器学习/深度学习 编解码 PyTorch
【YOLOv8改进】HAT(Hybrid Attention Transformer,)混合注意力机制 (论文笔记+引入代码)
YOLO目标检测专栏介绍了YOLO系列的改进方法和实战应用,包括卷积、主干网络、注意力机制和检测头的创新。提出的Hybrid Attention Transformer (HAT)结合通道注意力和窗口自注意力,激活更多像素以提升图像超分辨率效果。通过交叉窗口信息聚合和同任务预训练策略,HAT优化了Transformer在低级视觉任务中的性能。实验显示,HAT在图像超分辨率任务上显著优于现有方法。模型结构包含浅层和深层特征提取以及图像重建阶段。此外,提供了HAT模型的PyTorch实现代码。更多详细配置和任务说明可参考相关链接。
|
6月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力 (论文笔记+引入代码)
YOLO目标检测专栏介绍了创新的多尺度注意力模块EMA,它强化通道和空间信息处理,同时降低计算负担。EMA模块通过通道重塑和并行子网络优化特征表示,增强长距离依赖建模,在保持效率的同时提升模型性能。适用于图像分类和目标检测任务,尤其在YOLOv8中表现出色。代码实现和详细配置可在文中链接找到。