【从零开始学习深度学习】21. 卷积神经网络(CNN)之二维卷积层原理介绍、如何用卷积层检测物体边缘

简介: 【从零开始学习深度学习】21. 卷积神经网络(CNN)之二维卷积层原理介绍、如何用卷积层检测物体边缘

卷积神经网络(convolutional neural network)是含有卷积层(convolutional layer)的神经网络。最常见的卷积神经网络均使用二维卷积层。它有高和宽两个空间维度,常用来处理图像数据。本文将介绍简单形式的二维卷积层工作原理。

1. 二维互相关运算

虽然卷积层得名于卷积(convolution)运算,但我们通常在卷积层中使用更加直观的互相关(cross-correlation)运算。在二维卷积层中,一个二维输入数组和一个二维核(kernel)数组通过互相关运算输出一个二维数组。

我们用一个具体例子来解释二维互相关运算的含义。如下图所示,输入是一个高和宽均为3的二维数组。我们将该数组的形状记为3 × 3 3 \times 33×3或(3,3)。核数组的高和宽分别为2。该数组在卷积计算中又称卷积核或过滤器(filter)。卷积核窗口(又称卷积窗口)的形状取决于卷积核的高和宽,即2 × 2 2 \times 22×2。图中的阴影部分为第一个输出元素及其计算所使用的输入和核数组元素:0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19 0\times0+1\times1+3\times2+4\times3=190×0+1×1+3×2+4×3=19

在二维互相关运算中,卷积窗口从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动。当卷积窗口滑动到某一位置时,窗口中的输入子数组与核数组按对应元素相乘并求和,得到输出数组中相应位置的元素。图中的输出数组高和宽分别为2,其中的4个元素由二维互相关运算得出,计算如下:

image.png

下面我们将上述过程实现在corr2d函数里。它接受输入数组X与核数组K,并输出数组Y

import torch 
from torch import nn
def corr2d(X, K): 
    # K为卷积核
    h, w = K.shape
    # Y为卷积计算后的输出,形状为X.shape[0] - h + 1, X.shape[1] - w + 1
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i: i + h, j: j + w] * K).sum()
    return Y

我们可以构造上图1中的输入数组X、核数组K来验证二维互相关运算的输出。

X = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
K = torch.tensor([[0, 1], [2, 3]])
corr2d(X, K)

输出:

tensor([[19., 25.],
        [37., 43.]])

2. 自定义二维卷积

二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏差来得到输出。卷积层的模型参数包括了卷积核标量偏差在训练模型的时候,通常我们先对卷积核随机初始化,然后不断迭代卷积核和偏差

下面基于corr2d函数来实现一个自定义的二维卷积层。在构造函数__init__里我们声明weightbias这两个模型参数。前向计算函数forward则是直接调用corr2d函数再加上偏差。

class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        super(Conv2D, self).__init__()
        self.weight = nn.Parameter(torch.randn(kernel_size))
        self.bias = nn.Parameter(torch.randn(1))
    def forward(self, x):
        return corr2d(x, self.weight) + self.bias

卷积窗口形状为p × q p \times qp×q的卷积层称为p × q p \times qp×q卷积层。同样,p × q p \times qp×q卷积或p × q p \times qp×q卷积核说明卷积核的高和宽分别为p ppq qq

3. 卷积层的应用----图像中物体边缘检测

下面我们来看一个卷积层的简单应用:检测图像中物体的边缘,即找到像素变化的位置。首先我们构造一张6 × 8 6\times 86×8的图像(即高和宽分别为6像素和8像素的图像)。它中间4列为黑(0),其余为白(1)。

X = torch.ones(6, 8)
X[:, 2:6] = 0
X

输出:

tensor([[1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.]])

然后我们构造一个高和宽分别为1和2的卷积核K当它与输入做互相关运算时,如果横向相邻元素相同,输出为0;否则输出为非0

K = torch.tensor([[1, -1]])

下面将输入X和我们设计的卷积核K做互相关运算。可以看出,我们将从白到黑的边缘和从黑到白的边缘分别检测成了1和-1。其余部分的输出全是0。

Y = corr2d(X, K)
Y

输出:

tensor([[ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.]])

由此,我们可以看出,卷积层可通过重复使用卷积核有效地表征局部空间

4. 通过数据学习核数组

我们使用上面物体边缘检测中的输入数据X和输出数据Y来学习我们构造的核数组K。我们首先构造一个卷积层,其卷积核将被初始化成随机数组。接下来在每一次迭代中,我们使用平方误差来比较Y和卷积层的输出,然后计算梯度来更新权重。

# 构造一个核数组形状是(1, 2)的二维卷积层
conv2d = Conv2D(kernel_size=(1, 2))
step = 20
lr = 0.01
for i in range(step):
    Y_hat = conv2d(X)
    l = ((Y_hat - Y) ** 2).sum()
    l.backward()
    
    # 梯度下降
    conv2d.weight.data -= lr * conv2d.weight.grad
    conv2d.bias.data -= lr * conv2d.bias.grad
    
    # 梯度清0
    conv2d.weight.grad.fill_(0)
    conv2d.bias.grad.fill_(0)
    if (i + 1) % 5 == 0:
        print('Step %d, loss %.3f' % (i + 1, l.item()))

输出:

Step 5, loss 1.844
Step 10, loss 0.206
Step 15, loss 0.023
Step 20, loss 0.003

可以看到,20次迭代后误差已经降到了一个比较小的值。现在来看一下学习到的卷积核的参数。

print("weight: ", conv2d.weight.data)
print("bias: ", conv2d.bias.data)

输出:

weight:  tensor([[ 0.9948, -1.0092]])
bias:  tensor([0.0080])

可以看到,学到的卷积核的权重参数与我们之前定义的核数组K较接近,而偏置参数接近0。

5. 互相关运算和卷积运算

实际上,卷积运算与互相关运算类似。为了得到卷积运算的输出,我们只需将核数组左右翻转并上下翻转,再与输入数组做互相关运算。可见,卷积运算和互相关运算虽然类似,但如果它们使用相同的核数组,对于同一个输入,输出往往并不相同。

那么,你也许会好奇卷积层为何能使用互相关运算替代卷积运算。其实,在深度学习中核数组都是学出来的:卷积层无论使用互相关运算或卷积运算都不影响模型预测时的输出。为了解释这一点,假设卷积层使用互相关运算学出图1中的核数组。设其他条件不变,使用卷积运算学出的核数组即图1中的核数组按上下、左右翻转。也就是说,图1中的输入与学出的已翻转的核数组再做卷积运算时,依然得到图1中的输出。为了与大多数深度学习文献一致,如无特别说明,本书中提到的卷积运算均指互相关运算

6. 特征图和感受野

二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素x xx的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做x xx感受野(receptive field)。以图1为例,输入中阴影部分的四个元素是输出中阴影部分元素的感受野。我们将图1中形状为2×2的输出记为Y,并考虑一个更深的卷积神经网络:将Y与另一个形状为2×2的核数组做互相关运算,输出单个元素z。那么,zY上的感受野包括Y的全部四个元素,在输入上的感受野包括其中全部9个元素。可见,我们可以通过更深的卷积神经网络使特征图中单个元素的感受野变得更加广阔,从而捕捉输入上更大尺寸的特征

总结

  • 二维卷积层的核心计算是二维互相关运算。在最简单的形式下,它对二维输入数据和卷积核做互相关运算然后加上偏差。
  • 我们可以设计卷积核来检测图像中的边缘。
  • 我们可以通过数据来学习卷积核。

相关文章
|
3天前
|
机器学习/深度学习 数据采集 算法
Python基于OpenCV和卷积神经网络CNN进行车牌号码识别项目实战
Python基于OpenCV和卷积神经网络CNN进行车牌号码识别项目实战
39 19
|
3天前
|
机器学习/深度学习 编解码
深度之眼(二十八)——神经网络基础知识(三)-卷积神经网络
深度之眼(二十八)——神经网络基础知识(三)-卷积神经网络
26 14
|
12天前
|
机器学习/深度学习 算法 计算机视觉
基于深度学习网络的USB摄像头实时视频采集与人脸检测matlab仿真
**摘要 (Markdown格式):** ```markdown - 📹 使用USB摄像头(Tttttttttttttt666)实时视频检测,展示基于YOLOv2在MATLAB2022a的实施效果: ``` Tttttttttttttt1111111111------------5555555555 ``` - 📺 程序核心利用MATLAB视频采集配置及工具箱(Dddddddddddddd),实现图像采集与人脸定位。 - 🧠 YOLOv2算法概览:通过S×S网格预测边界框(B个/网格),含坐标、类别概率和置信度,高效检测人脸。
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的未来:深度学习与神经网络的融合
【7月更文挑战第11天】随着科技的不断进步,人工智能(AI)领域正迎来前所未有的发展机遇。本文将深入探讨深度学习和神经网络这两大技术如何相互融合,共同推动AI的未来走向。我们将从基础概念出发,逐步解析它们在实际应用中的协同效应,并预测未来可能的发展趋势。
|
12天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【YOLOv8改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
YOLO目标检测专栏介绍了SimAM,一种无参数的CNN注意力模块,基于神经科学理论优化能量函数,提升模型表现。SimAM通过计算3D注意力权重增强特征表示,无需额外参数。文章提供论文链接、Pytorch实现代码及详细配置,展示了如何在目标检测任务中应用该模块。
|
3天前
|
机器学习/深度学习 数据采集 算法
Python基于卷积神经网络CNN模型和VGG16模型进行图片识别项目实战
Python基于卷积神经网络CNN模型和VGG16模型进行图片识别项目实战
|
7天前
|
机器学习/深度学习 人工智能 计算机视觉
好的资源-----打卡机+Arm+Qt+OpenCV嵌入式项目-基于人脸识别的考勤系统-----B站神经网络与深度学习,商城
好的资源-----打卡机+Arm+Qt+OpenCV嵌入式项目-基于人脸识别的考勤系统-----B站神经网络与深度学习,商城
|
7天前
|
机器学习/深度学习 物联网 区块链
未来触手可及:探索区块链、物联网和虚拟现实的革新之路探索深度学习中的卷积神经网络(CNN)
随着科技的飞速发展,新兴技术如区块链、物联网(IoT)和虚拟现实(VR)正不断重塑我们的工作和生活方式。本文将深入探讨这些技术的最新发展趋势,分析它们如何在不同行业实现应用革新,并预测其未来的融合潜力。我们将从技术的基本原理出发,通过案例研究,揭示它们在现实世界中的创新应用场景,并讨论面临的挑战与机遇。 在机器学习领域,卷积神经网络(CNN)已成为图像识别和处理的基石。本文深入探讨了CNN的核心原理、架构以及在多个领域的应用实例,旨在为读者提供从理论到实践的全面理解。
|
7天前
|
机器学习/深度学习 传感器 人工智能
探索人工智能的未来:深度学习与神经网络的融合
本文旨在探讨人工智能领域的最新趋势,特别是深度学习和神经网络如何相互融合,推动技术革新。我们将通过具体的案例分析,展示这些技术在现实世界中的应用,并讨论其对社会的潜在影响。文章将提供对当前研究进展的深入理解,以及对未来发展的预测。
18 0
|
29天前
|
机器学习/深度学习
【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍
【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍
【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍