【项目实践】中英文文字检测与识别项目(CTPN+CRNN+CTC Loss原理讲解)(三)

简介: 【项目实践】中英文文字检测与识别项目(CTPN+CRNN+CTC Loss原理讲解)(三)

4、OCR中文识别项目实战


4.1、OCR实践项目目录

291f8fe6c762398cdcdf55a45a243553.png


4.2、 文字检测模型CTPN网络结构的搭建

import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
class RPN_REGR_Loss(nn.Module):
    def __init__(self, device, sigma=9.0):
        super(RPN_REGR_Loss, self).__init__()
        self.sigma = sigma
        self.device = device
    def forward(self, input, target):
        '''
        smooth L1 loss
        :param input:y_preds
        :param target: y_true
        :return:
        '''
        try:
            cls = target[0, :, 0]
            regr = target[0, :, 1:3]
            regr_keep = (cls == 1).nonzero()[:, 0]
            regr_true = regr[regr_keep]
            regr_pred = input[0][regr_keep]
            diff = torch.abs(regr_true - regr_pred)
            less_one = (diff < 1.0 / self.sigma).float()
            loss = less_one * 0.5 * diff ** 2 * self.sigma + torch.abs(1 - less_one) * (diff - 0.5 / self.sigma)
            loss = torch.sum(loss, 1)
            loss = torch.mean(loss) if loss.numel() > 0 else torch.tensor(0.0)
        except Exception as e:
            print('RPN_REGR_Loss Exception:', e)
            # print(input, target)
            loss = torch.tensor(0.0)
        return loss.to(self.device)
class RPN_CLS_Loss(nn.Module):
    def __init__(self, device):
        super(RPN_CLS_Loss, self).__init__()
        self.device = device
    def forward(self, input, target):
        y_true = target[0][0]
        cls_keep = (y_true != -1).nonzero()[:, 0]
        cls_true = y_true[cls_keep].long()
        cls_pred = input[0][cls_keep]
        loss = F.nll_loss(F.log_softmax(cls_pred, dim=-1),
                          cls_true)  # original is sparse_softmax_cross_entropy_with_logits
        # loss = nn.BCEWithLogitsLoss()(cls_pred[:,0], cls_true.float())  # 18-12-8
        loss = torch.clamp(torch.mean(loss), 0, 10) if loss.numel() > 0 else torch.tensor(0.0)
        return loss.to(self.device)
class basic_conv(nn.Module):
    def __init__(self,
                 in_planes,
                 out_planes,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 relu=True,
                 bn=True,
                 bias=True):
        super(basic_conv, self).__init__()
        self.out_channels = out_planes
        self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
                              dilation=dilation, groups=groups, bias=bias)
        self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None
        self.relu = nn.ReLU(inplace=True) if relu else None
    def forward(self, x):
        x = self.conv(x)
        if self.bn is not None:
            x = self.bn(x)
        if self.relu is not None:
            x = self.relu(x)
        return x
class CTPN_Model(nn.Module):
    def __init__(self):
        super().__init__()
        base_model = models.vgg16(pretrained=False)
        layers = list(base_model.features)[:-1]
        self.base_layers = nn.Sequential(*layers)  # block5_conv3 output
        self.rpn = basic_conv(512, 512, 3, 1, 1, bn=False)
        self.brnn = nn.GRU(512, 128, bidirectional=True, batch_first=True)
        self.lstm_fc = basic_conv(256, 512, 1, 1, relu=True, bn=False)
        self.rpn_class = basic_conv(512, 10 * 2, 1, 1, relu=False, bn=False)
        self.rpn_regress = basic_conv(512, 10 * 2, 1, 1, relu=False, bn=False)
    def forward(self, x):
        x = self.base_layers(x)
        # rpn
        x = self.rpn(x)  # [b, c, h, w]
        x1 = x.permute(0, 2, 3, 1).contiguous()  # channels last   [b, h, w, c]
        b = x1.size()  # b, h, w, c
        x1 = x1.view(b[0] * b[1], b[2], b[3])
        x2, _ = self.brnn(x1)
        xsz = x.size()
        x3 = x2.view(xsz[0], xsz[2], xsz[3], 256)  # torch.Size([4, 20, 20, 256])
        x3 = x3.permute(0, 3, 1, 2).contiguous()  # channels first [b, c, h, w]
        x3 = self.lstm_fc(x3)
        x = x3
        cls = self.rpn_class(x)
        regr = self.rpn_regress(x)
        cls = cls.permute(0, 2, 3, 1).contiguous()
        regr = regr.permute(0, 2, 3, 1).contiguous()
        cls = cls.view(cls.size(0), cls.size(1) * cls.size(2) * 10, 2)
        regr = regr.view(regr.size(0), regr.size(1) * regr.size(2) * 10, 2)
        return cls, regr

4.3、CTPN网络结构搭建

import torch.nn as nn
from collections import OrderedDict
class BidirectionalLSTM(nn.Module):
    def __init__(self, nIn, nHidden, nOut):
        super(BidirectionalLSTM, self).__init__()
        self.rnn = nn.LSTM(nIn, nHidden, bidirectional=True)
        self.embedding = nn.Linear(nHidden * 2, nOut)
    def forward(self, input):
        recurrent, _ = self.rnn(input)
        T, b, h = recurrent.size()
        t_rec = recurrent.view(T * b, h)
        output = self.embedding(t_rec)  # [T * b, nOut]
        output = output.view(T, b, -1)
        return output
class CRNN(nn.Module):
    def __init__(self, imgH, nc, nclass, nh, leakyRelu=False):
        super(CRNN, self).__init__()
        assert imgH % 16 == 0, 'imgH has to be a multiple of 16'
        # 1x32x128
        self.conv1 = nn.Conv2d(nc, 64, 3, 1, 1)
        self.relu1 = nn.ReLU(True)
        self.pool1 = nn.MaxPool2d(2, 2)
        # 64x16x64
        self.conv2 = nn.Conv2d(64, 128, 3, 1, 1)
        self.relu2 = nn.ReLU(True)
        self.pool2 = nn.MaxPool2d(2, 2)
        # 128x8x32
        self.conv3_1 = nn.Conv2d(128, 256, 3, 1, 1)
        self.bn3 = nn.BatchNorm2d(256)
        self.relu3_1 = nn.ReLU(True)
        self.conv3_2 = nn.Conv2d(256, 256, 3, 1, 1)
        self.relu3_2 = nn.ReLU(True)
        self.pool3 = nn.MaxPool2d((2, 2), (2, 1), (0, 1))
        # 256x4x16
        self.conv4_1 = nn.Conv2d(256, 512, 3, 1, 1)
        self.bn4 = nn.BatchNorm2d(512)
        self.relu4_1 = nn.ReLU(True)
        self.conv4_2 = nn.Conv2d(512, 512, 3, 1, 1)
        self.relu4_2 = nn.ReLU(True)
        self.pool4 = nn.MaxPool2d((2, 2), (2, 1), (0, 1))
        # 512x2x16
        self.conv5 = nn.Conv2d(512, 512, 2, 1, 0)
        self.bn5 = nn.BatchNorm2d(512)
        self.relu5 = nn.ReLU(True)
        # 512x1x16
        self.rnn = nn.Sequential(
            BidirectionalLSTM(512, nh, nh),
            BidirectionalLSTM(nh, nh, nclass))
    def forward(self, input):
        # conv features
        x = self.pool1(self.relu1(self.conv1(input)))
        x = self.pool2(self.relu2(self.conv2(x)))
        x = self.pool3(self.relu3_2(self.conv3_2(self.relu3_1(self.bn3(self.conv3_1(x))))))
        x = self.pool4(self.relu4_2(self.conv4_2(self.relu4_1(self.bn4(self.conv4_1(x))))))
        conv = self.relu5(self.bn5(self.conv5(x)))
        # print(conv.size())
        b, c, h, w = conv.size()
        assert h == 1, "the height of conv must be 1"
        conv = conv.squeeze(2)
        conv = conv.permute(2, 0, 1)  # [w, b, c]
        # rnn features
        output = self.rnn(conv)
        return output
class CRNN_v2(nn.Module):
    def __init__(self, imgH, nc, nclass, nh, leakyRelu=False):
        super(CRNN_v2, self).__init__()
        assert imgH % 16 == 0, 'imgH has to be a multiple of 16'
        # 1x32x128
        self.conv1_1 = nn.Conv2d(nc, 32, 3, 1, 1)
        self.bn1_1 = nn.BatchNorm2d(32)
        self.relu1_1 = nn.ReLU(True)
        self.conv1_2 = nn.Conv2d(32, 64, 3, 1, 1)
        self.bn1_2 = nn.BatchNorm2d(64)
        self.relu1_2 = nn.ReLU(True)
        self.pool1 = nn.MaxPool2d(2, 2)
        # 64x16x64
        self.conv2_1 = nn.Conv2d(64, 64, 3, 1, 1)
        self.bn2_1 = nn.BatchNorm2d(64)
        self.relu2_1 = nn.ReLU(True)
        self.conv2_2 = nn.Conv2d(64, 128, 3, 1, 1)
        self.bn2_2 = nn.BatchNorm2d(128)
        self.relu2_2 = nn.ReLU(True)
        self.pool2 = nn.MaxPool2d(2, 2)
        # 128x8x32
        self.conv3_1 = nn.Conv2d(128, 96, 3, 1, 1)
        self.bn3_1 = nn.BatchNorm2d(96)
        self.relu3_1 = nn.ReLU(True)
        self.conv3_2 = nn.Conv2d(96, 192, 3, 1, 1)
        self.bn3_2 = nn.BatchNorm2d(192)
        self.relu3_2 = nn.ReLU(True)
        self.pool3 = nn.MaxPool2d((2, 2), (2, 1), (0, 1))
        # 192x4x32
        self.conv4_1 = nn.Conv2d(192, 128, 3, 1, 1)
        self.bn4_1 = nn.BatchNorm2d(128)
        self.relu4_1 = nn.ReLU(True)
        self.conv4_2 = nn.Conv2d(128, 256, 3, 1, 1)
        self.bn4_2 = nn.BatchNorm2d(256)
        self.relu4_2 = nn.ReLU(True)
        self.pool4 = nn.MaxPool2d((2, 2), (2, 1), (0, 1))
        # 256x2x32
        self.bn5 = nn.BatchNorm2d(256)
        # 256x2x32
        self.rnn = nn.Sequential(
            BidirectionalLSTM(512, nh, nh),
            BidirectionalLSTM(nh, nh, nclass))
    def forward(self, input):
        # conv features
        x = self.pool1(self.relu1_2(self.bn1_2(self.conv1_2(self.relu1_1(self.bn1_1(self.conv1_1(input)))))))
        x = self.pool2(self.relu2_2(self.bn2_2(self.conv2_2(self.relu2_1(self.bn2_1(self.conv2_1(x)))))))
        x = self.pool3(self.relu3_2(self.bn3_2(self.conv3_2(self.relu3_1(self.bn3_1(self.conv3_1(x)))))))
        x = self.pool4(self.relu4_2(self.bn4_2(self.conv4_2(self.relu4_1(self.bn4_1(self.conv4_1(x)))))))
        conv = self.bn5(x)
        # print(conv.size())
        b, c, h, w = conv.size()
        assert h == 2, "the height of conv must be 2"
        conv = conv.reshape([b,c*h,w])
        conv = conv.permute(2, 0, 1)  # [w, b, c]
        # rnn features
        output = self.rnn(conv)
        return output
def conv3x3(nIn, nOut, stride=1):
    # "3x3 convolution with padding"
    return nn.Conv2d( nIn, nOut, kernel_size=3, stride=stride, padding=1, bias=False )
class basic_res_block(nn.Module):
    def __init__(self, nIn, nOut, stride=1, downsample=None):
        super( basic_res_block, self ).__init__()
        m = OrderedDict()
        m['conv1'] = conv3x3( nIn, nOut, stride )
        m['bn1'] = nn.BatchNorm2d( nOut )
        m['relu1'] = nn.ReLU( inplace=True )
        m['conv2'] = conv3x3( nOut, nOut )
        m['bn2'] = nn.BatchNorm2d( nOut )
        self.group1 = nn.Sequential( m )
        self.relu = nn.Sequential( nn.ReLU( inplace=True ) )
        self.downsample = downsample
    def forward(self, x):
        if self.downsample is not None:
            residual = self.downsample( x )
        else:
            residual = x
        out = self.group1( x ) + residual
        out = self.relu( out )
        return out
class CRNN_res(nn.Module):
    def __init__(self, imgH, nc, nclass, nh):
        super(CRNN_res, self).__init__()
        assert imgH % 16 == 0, 'imgH has to be a multiple of 16'
        self.conv1 = nn.Conv2d(nc, 64, 3, 1, 1)
        self.relu1 = nn.ReLU(True)
        self.res1 = basic_res_block(64, 64)
        # 1x32x128
        down1 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(128))
        self.res2_1 = basic_res_block( 64, 128, 2, down1 )
        self.res2_2 = basic_res_block(128,128)
        # 64x16x64
        down2 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(256))
        self.res3_1 = basic_res_block(128, 256, 2, down2)
        self.res3_2 = basic_res_block(256, 256)
        self.res3_3 = basic_res_block(256, 256)
        # 128x8x32
        down3 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=1, stride=(2, 1), bias=False),nn.BatchNorm2d(512))
        self.res4_1 = basic_res_block(256, 512, (2, 1), down3)
        self.res4_2 = basic_res_block(512, 512)
        self.res4_3 = basic_res_block(512, 512)
        # 256x4x16
        self.pool = nn.AvgPool2d((2, 2), (2, 1), (0, 1))
        # 512x2x16
        self.conv5 = nn.Conv2d(512, 512, 2, 1, 0)
        self.bn5 = nn.BatchNorm2d(512)
        self.relu5 = nn.ReLU(True)
        # 512x1x16
        self.rnn = nn.Sequential(
            BidirectionalLSTM(512, nh, nh),
            BidirectionalLSTM(nh, nh, nclass))
    def forward(self, input):
        # conv features
        x = self.res1(self.relu1(self.conv1(input)))
        x = self.res2_2(self.res2_1(x))
        x = self.res3_3(self.res3_2(self.res3_1(x)))
        x = self.res4_3(self.res4_2(self.res4_1(x)))
        x = self.pool(x)
        conv = self.relu5(self.bn5(self.conv5(x)))
        # print(conv.size())
        b, c, h, w = conv.size()
        assert h == 1, "the height of conv must be 1"
        conv = conv.squeeze(2)
        conv = conv.permute(2, 0, 1)  # [w, b, c]
        # rnn features
        output = self.rnn(conv)
        return output
if __name__ == '__main__':
    pass

5.4、中英文图片的识别结果展示



参考:

https://zhuanlan.zhihu.com/p/28133530

https://zhuanlan.zhihu.com/p/43534801

https://arxiv.org/pdf/1507.05717.pdf

https://www.cnblogs.com/skyfsm/p/10335717.html

https://zhuanlan.zhihu.com/p/43534801

http://noahsnail.com/

https://www.jianshu.com/p/109231be4a24

相关文章
|
机器学习/深度学习 自然语言处理 文字识别
【计算机视觉】CLIP:连接文本和图像(关于CLIP的一些补充说明)
我们推出了一个名为CLIP的神经网络,它可以有效地从自然语言监督中学习视觉概念。CLIP可以应用于任何视觉分类基准,只需提供要识别的视觉类别名称,类似于GPT-2和GPT-3的“零样本”功能。
|
3月前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
406 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
3月前
|
机器学习/深度学习 人工智能 算法
[大语言模型-论文精读] Diffusion Model技术-通过时间和空间组合扩散模型生成复杂的3D人物动作
[大语言模型-论文精读] Diffusion Model技术-通过时间和空间组合扩散模型生成复杂的3D人物动作
34 0
|
5月前
|
机器学习/深度学习 存储 算法
【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索Python代码baseline
本文通过可视化分析,总结了2024年考研国家分数线的变化趋势,指出管理类MBA降低5分,哲学、历史学、理学、医学等10个专业分数线上涨,而经济学等专业出现下降,反映出不同专业分数线受考生数量、竞争情况和政策调整等因素的影响。
87 2
【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索Python代码baseline
|
8月前
|
测试技术 计算机视觉
ICLR 2024 Spotlight:自蒸馏激发CLIP模型的检测分割能力
【2月更文挑战第28天】ICLR 2024 Spotlight:自蒸馏激发CLIP模型的检测分割能力
185 1
ICLR 2024 Spotlight:自蒸馏激发CLIP模型的检测分割能力
|
机器学习/深度学习 文字识别 算法
【项目实践】中英文文字检测与识别项目(CTPN+CRNN+CTC Loss原理讲解)(二)
【项目实践】中英文文字检测与识别项目(CTPN+CRNN+CTC Loss原理讲解)(二)
310 0
|
机器学习/深度学习 文字识别 算法
【项目实践】中英文文字检测与识别项目(CTPN+CRNN+CTC Loss原理讲解)(一)
【项目实践】中英文文字检测与识别项目(CTPN+CRNN+CTC Loss原理讲解)(一)
338 0
|
编解码 计算机视觉 网络架构
CVPR2021 | 重新思考BiSeNet让语义分割模型速度起飞(文末获取论文)(一)
CVPR2021 | 重新思考BiSeNet让语义分割模型速度起飞(文末获取论文)(一)
356 0
|
数据可视化 计算机视觉
CVPR2021 | 重新思考BiSeNet让语义分割模型速度起飞(文末获取论文)(二)
CVPR2021 | 重新思考BiSeNet让语义分割模型速度起飞(文末获取论文)(二)
138 0
|
文字识别
【OCR学习笔记】9、OCR中文项目综合实践(CTPN+CRNN+CTC Loss原理讲解)(三)
【OCR学习笔记】9、OCR中文项目综合实践(CTPN+CRNN+CTC Loss原理讲解)(三)
244 0