【OCR学习笔记】9、OCR中文项目综合实践(CTPN+CRNN+CTC Loss原理讲解)(二)

本文涉及的产品
教育场景识别,教育场景识别 200次/月
小语种识别,小语种识别 200次/月
个人证照识别,个人证照识别 200次/月
简介: 【OCR学习笔记】9、OCR中文项目综合实践(CTPN+CRNN+CTC Loss原理讲解)(二)

2、CRNN网络


现今基于深度学习的端到端OCR技术有两大主流技术:CRNN OCR和attention OCR。其实这两大方法主要区别在于最后的输出层(翻译层),即怎么将网络学习到的序列特征信息转化为最终的识别结果。这两大主流技术在其特征学习阶段都采用了CNN+RNN的网络结构,CRNN OCR在对齐时采取的方式是CTC算法,而attention OCR采取的方式则是attention机制。本部分主要介绍应用更为广泛的CRNN算法。


2.1、CRNN 介绍

CRNN全称为Convolutional Recurrent Neural Network,主要用于端到端地对不定长的文本序列进行识别,不用先对单个文字进行切割,而是将文本识别转化为时序依赖的序列学习问题,就是基于图像的序列识别。

image.png

整个CRNN网络结构包含三部分,从下到上依次为:

1.CNN(卷积层):使用深度CNN,对输入图像提取特征,得到特征图;

2.RNN(循环层):使用双向RNN(BLSTM)对特征序列进行预测,对序列中的每个特征向量进行学习,并输出预测标签(真实值)分布;

3.CTC loss(转录层):使用CTC损失,把从循环层获取的一系列标签分布转换成最终的标签序列。


2.2、CNN卷积层结构

image.png

这里有一个很精彩的改动,一共有四个最大池化层,但是最后两个池化层的窗口尺寸由 2x2 改为 1x2,也就是图片的高度减半了四次(除以24),而宽度则只减半了两次(除以22),这是因为文本图像多数都是高较小而宽较长,所以其feature map也是这种高小宽长的矩形形状,如果使用1×2的池化窗口可以尽量保证不丢失在宽度方向的信息,更适合英文字母识别(比如区分i和l)。


CRNN还引入了BatchNormalization模块,加速模型收敛,缩短训练过程。


输入图像为灰度图像(单通道);高度为32,这是固定的,图片通过CNN后,高度就变为1,这点很重要;宽度为160,宽度也可以为其他的值,但需要统一,所以输入CNN的数据尺寸为 (channel, height, width)=(1, 32, 160)。

CNN的输出尺寸为 (512, 1, 40)。即CNN最后得到512个特征图,每个特征图的高度为1,宽度为40。


2.3、Map-to-Sequence

不能直接把CNN得到的特征图送入RNN进行训练的,需要进行一些调整,根据特征图提取RNN需要的特征向量序列。

现在需要从CNN模型产生的特征图中提取特征向量序列,每一个特征向量(如上图中的一个红色框)在特征图上按列从左到右生成,每一列包含512维特征,这意味着第i个特征向量是所有的特征图第i列像素的连接,这些特征向量就构成一个序列。


由于卷积层,最大池化层和激活函数在局部区域上执行,因此它们是平移不变的。因此,特征图的每列(即一个特征向量)对应于原始图像的一个矩形区域(称为感受野),并且这些矩形区域与特征图上从左到右的相应列具有相同的顺序。特征序列中的每个向量关联一个感受野。如下图所示:

这些特征向量序列就作为循环层的输入,每个特征向量作为RNN在一个时间步(time step)的输入。


2.4、RNN

因为RNN有梯度消失的问题,不能获取更多上下文信息,所以CRNN中使用的是LSTM,LSTM的特殊设计允许它捕获长距离依赖。


LSTM是单向的,它只使用过去的信息。然而,在基于图像的序列中,两个方向的上下文是相互有用且互补的。将两个LSTM,一个向前和一个向后组合到一个双向LSTM中。此外,可以堆叠多层双向LSTM,深层结构允许比浅层抽象更高层次的抽象。


这里采用的是两层各256单元的双向LSTM网络:

通过上面一步,我们得到了40个特征向量,每个特征向量长度为512,在LSTM中一个时间步就传入一个特征向量进行分类,这里一共有40个时间步。


我们知道一个特征向量就相当于原图中的一个小矩形区域,RNN的目标就是预测这个矩形区域为哪个字符,即根据输入的特征向量,进行预测,得到所有字符的softmax概率分布,这是一个长度为字符类别数的向量,作为CTC层的输入。


因为每个时间步都会有一个输入特征向量xT,输出一个所有字符的概率分布yT,所以输出为40个长度为字符类别数的向量构成的后验概率矩阵。如下图所示:

image.png

然后将这个后验概率矩阵传入转录层。


2.5、CTC Loss

这算是CRNN最难的地方,这一层为转录层,转录是将RNN对每个特征向量所做的预测转换成标签序列的过程。数学上,转录是根据每帧预测找到具有最高概率组合的标签序列。


端到端OCR识别的难点在于怎么处理不定长序列对齐的问题!OCR可建模为时序依赖的文本图像问题,然后使用CTC(Connectionist Temporal Classification, CTC)的损失函数来对CNN和RNN进行端到端的联合训练。


2.5.1、序列合并机制

我们现在要将RNN输出的序列翻译成最终的识别结果,RNN进行时序分类时,不可避免地会出现很多冗余信息,比如一个字母被连续识别两次,这就需要一套去冗余机制。

image.png

比如我们要识别上面这个文本,其中RNN中有5个时间步,理想情况下 t0, t1, t2时刻都应映射为“a”,t3, t4 时刻都应映射为“b”,然后将这些字符序列连接起来得到“aaabb”,我们再将连续重复的字符合并成一个,那么最终结果为“ab”。


这似乎是个比较好的方法,但是存在一个问题,如果是book,hello之类的词,合并连续字符后就会得到 bok 和 helo,这显然不行,所以CTC有一个blank机制来解决这个问题。


我们以“-”符号代表blank,RNN 输出序列时,在文本标签中的重复的字符之间插入一个“-”,比如输出序列为“bbooo-ookk”,则最后将被映射为“book”,即有blank字符隔开的话,连续相同字符就不进行合并。


即对字符序列先删除连续重复字符,然后从路径中删除所有“-”字符,这个称为解码过程,而编码则是由神经网络来实现。引入blank机制,我们就可以很好地解决重复字符的问题。


相同的文本标签可以有多个不同的字符对齐组合,例如,“aa-b”和“aabb”以及“-abb”都代表相同的文本(“ab”),但是与图像的对齐方式不同。更总结地说,一个文本标签存在一条或多条的路径。


2.5.2、训练阶段

在训练阶段,我们需要根据这些概率分布向量和相应的文本标签得到损失函数,从而训练神经网路模型,下面来看看如何得到损失函数的。

image.png

如上图,对于最简单的时序为 2 的字符识别,有两个时间步长(t0,t1)和三个可能的字符为“a”,“b”和“-”,我们得到两个概率分布向量,如果采取最大概率路径解码的方法,则“--”的概率最大,即真实字符为空的概率为0.6*0.6=0.36。

但是为字符“a”的情况有多种对齐组合,“aa”, “a-“和“-a”都是代表“a”,所以,输出“a”的概率应该为三种之和:

image.png

所以“a”的概率比空“”的概率高!如果标签文本为“a”,则通过计算图像中为“a”的所有可能的对齐组合(或者路径)的分数之和来计算损失函数。


所以对于RNN给定输入概率分布矩阵为y={y1,y2,...,yT},T是序列长度,最后映射为标签文本l的总概率为:

image.png

其中B(π)代表从序列到序列的映射函数B变换后是文本l的所有路径集合,而π则是其中的一条路径。每条路径的概率为各个时间步中对应字符的分数的乘积。


我们就是需要训练网络使得这个概率值最大化,类似于普通的分类,CTC的损失函数定义为概率的负最大似然函数,为了计算方便,对似然函数取对数。


通过对损失函数的计算,就可以对之前的神经网络进行反向传播,神经网络的参数根据所使用的优化器进行更新,从而找到最可能的像素区域对应的字符。


这种通过映射变换和所有可能路径概率之和的方式使得CTC不需要对原始的输入字符序列进行准确的切分。


3.1.2、划分标准

在测试阶段,过程与训练阶段有所不同,我们用训练好的神经网络来识别新的文本图像。这时候我们事先不知道任何文本,如果我们像上面一样将每种可能文本的所有路径计算出来,对于很长的时间步和很长的字符序列来说,这个计算量是非常庞大的,这不是一个可行的方案。


我们知道RNN在每一个时间步的输出为所有字符类别的概率分布,即一个包含每个字符分数的向量,我们取其中最大概率的字符作为该时间步的输出字符,然后将所有时间步得到一个字符进行拼接得到一个序列路径,即最大概率路径,再根据上面介绍的合并序列方法得到最终的预测文本结果。


在输出阶段经过CTC的翻译,即将网络学习到的序列特征信息转化为最终的识别文本,就可以对整个文本图像进行识别。

image.png

比如上面这个图,有5个时间步,字符类别有“a”, “b” and “-” (blank),对于每个时间步的概率分布,我们都取分数最大的字符,所以得到序列路径“aaa-b”,先移除相邻重复的字符得到“a-b”,然后去除blank字符得到最终结果:“ab”。


2.5.4、CRNN小结

预测过程中,先使用标准的CNN网络提取文本图像的特征,再利用BLSTM将特征向量进行融合以提取字符序列的上下文特征,然后得到每列特征的概率分布,最后通过转录层(CTC)进行预测得到文本序列。


利用BLSTM和CTC学习到文本图像中的上下文关系,从而有效提升文本识别准确率,使得模型更加鲁棒。


在训练阶段,CRNN将训练图像统一缩放为160×32(w×h);在测试阶段,针对字符拉伸会导致识别率降低的问题,CRNN保持输入图像尺寸比例,但是图像高度还是必须统一为32个像素,卷积特征图的尺寸动态决定LSTM 的时序长度(时间步长)。

相关文章
|
8月前
|
文字识别 异构计算 Python
关于Github中开源OCR项目的实验过程与思考
新手尝试Git clone Python OCR项目,遇到各种报错。测试了Paddle OCR、Tesseract OCR和EasyOCR。Paddle OCR因平台限制未能在Notebook部署,Tesseract OCR在Colab成功但无法复现。EasyOCR最终在阿里云天池和Colab部署成功,但天池GPU资源不足。建议使用魔搭社区的实例,阿里云提供免费OCR服务。寻求简单OCR项目推荐。附EasyOCR安装和使用代码。
260 2
|
2月前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。
|
6月前
|
文字识别 Java Spring
文本,文字识别,SpringBoot服务开发,SpringBoot如何提供上传服务,接口的设计,它做了将Base64重新转为图片,SpringBoot的应用实例,项目基础搭建
文本,文字识别,SpringBoot服务开发,SpringBoot如何提供上传服务,接口的设计,它做了将Base64重新转为图片,SpringBoot的应用实例,项目基础搭建
|
8月前
|
机器学习/深度学习 文字识别 算法
【Keras计算机视觉OCR】文字识别算法中DenseNet、LSTM、CTC、Attention的讲解(图文解释 超详细)
【Keras计算机视觉OCR】文字识别算法中DenseNet、LSTM、CTC、Attention的讲解(图文解释 超详细)
328 0
|
8月前
|
机器学习/深度学习 文字识别 算法
【Keras计算机视觉OCR文字识别】文字检测算法中CTPN、CRAFT的讲解(图文解释 超详细)
【Keras计算机视觉OCR文字识别】文字检测算法中CTPN、CRAFT的讲解(图文解释 超详细)
273 0
|
机器学习/深度学习 人工智能 文字识别
深度学习应用篇-计算机视觉-OCR光学字符识别[7]:OCR综述、常用CRNN识别方法、DBNet、CTPN检测方法等、评估指标、应用场景
深度学习应用篇-计算机视觉-OCR光学字符识别[7]:OCR综述、常用CRNN识别方法、DBNet、CTPN检测方法等、评估指标、应用场景
深度学习应用篇-计算机视觉-OCR光学字符识别[7]:OCR综述、常用CRNN识别方法、DBNet、CTPN检测方法等、评估指标、应用场景
|
存储 文字识别 算法
基于飞桨实现项目2 中文场景文字识别
基于飞桨实现项目2 中文场景文字识别
290 0
基于飞桨实现项目2 中文场景文字识别
|
文字识别
【OCR学习笔记】9、OCR中文项目综合实践(CTPN+CRNN+CTC Loss原理讲解)(三)
【OCR学习笔记】9、OCR中文项目综合实践(CTPN+CRNN+CTC Loss原理讲解)(三)
247 0
|
6月前
|
人工智能 文字识别 开发工具
印刷文字识别使用问题之是否支持识别并返回文字在图片中的位置信息
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。
|
6月前
|
人工智能 JSON 文字识别
印刷文字识别使用问题之如何数电发票进行识别
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。

热门文章

最新文章