【OCR学习笔记】9、OCR中文项目综合实践(CTPN+CRNN+CTC Loss原理讲解)(三)

本文涉及的产品
教育场景识别,教育场景识别 200次/月
小语种识别,小语种识别 200次/月
个人证照识别,个人证照识别 200次/月
简介: 【OCR学习笔记】9、OCR中文项目综合实践(CTPN+CRNN+CTC Loss原理讲解)(三)

4、OCR中文识别项目实战


4.1、OCR实践项目目录


4.2、 文字检测模型CTPN网络结构的搭建

import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
class RPN_REGR_Loss(nn.Module):
    def __init__(self, device, sigma=9.0):
        super(RPN_REGR_Loss, self).__init__()
        self.sigma = sigma
        self.device = device
    def forward(self, input, target):
        '''
        smooth L1 loss
        :param input:y_preds
        :param target: y_true
        :return:
        '''
        try:
            cls = target[0, :, 0]
            regr = target[0, :, 1:3]
            regr_keep = (cls == 1).nonzero()[:, 0]
            regr_true = regr[regr_keep]
            regr_pred = input[0][regr_keep]
            diff = torch.abs(regr_true - regr_pred)
            less_one = (diff < 1.0 / self.sigma).float()
            loss = less_one * 0.5 * diff ** 2 * self.sigma + torch.abs(1 - less_one) * (diff - 0.5 / self.sigma)
            loss = torch.sum(loss, 1)
            loss = torch.mean(loss) if loss.numel() > 0 else torch.tensor(0.0)
        except Exception as e:
            print('RPN_REGR_Loss Exception:', e)
            # print(input, target)
            loss = torch.tensor(0.0)
        return loss.to(self.device)
class RPN_CLS_Loss(nn.Module):
    def __init__(self, device):
        super(RPN_CLS_Loss, self).__init__()
        self.device = device
    def forward(self, input, target):
        y_true = target[0][0]
        cls_keep = (y_true != -1).nonzero()[:, 0]
        cls_true = y_true[cls_keep].long()
        cls_pred = input[0][cls_keep]
        loss = F.nll_loss(F.log_softmax(cls_pred, dim=-1),
                          cls_true)  # original is sparse_softmax_cross_entropy_with_logits
        # loss = nn.BCEWithLogitsLoss()(cls_pred[:,0], cls_true.float())  # 18-12-8
        loss = torch.clamp(torch.mean(loss), 0, 10) if loss.numel() > 0 else torch.tensor(0.0)
        return loss.to(self.device)
class basic_conv(nn.Module):
    def __init__(self,
                 in_planes,
                 out_planes,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 relu=True,
                 bn=True,
                 bias=True):
        super(basic_conv, self).__init__()
        self.out_channels = out_planes
        self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
                              dilation=dilation, groups=groups, bias=bias)
        self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None
        self.relu = nn.ReLU(inplace=True) if relu else None
    def forward(self, x):
        x = self.conv(x)
        if self.bn is not None:
            x = self.bn(x)
        if self.relu is not None:
            x = self.relu(x)
        return x
class CTPN_Model(nn.Module):
    def __init__(self):
        super().__init__()
        base_model = models.vgg16(pretrained=False)
        layers = list(base_model.features)[:-1]
        self.base_layers = nn.Sequential(*layers)  # block5_conv3 output
        self.rpn = basic_conv(512, 512, 3, 1, 1, bn=False)
        self.brnn = nn.GRU(512, 128, bidirectional=True, batch_first=True)
        self.lstm_fc = basic_conv(256, 512, 1, 1, relu=True, bn=False)
        self.rpn_class = basic_conv(512, 10 * 2, 1, 1, relu=False, bn=False)
        self.rpn_regress = basic_conv(512, 10 * 2, 1, 1, relu=False, bn=False)
    def forward(self, x):
        x = self.base_layers(x)
        # rpn
        x = self.rpn(x)  # [b, c, h, w]
        x1 = x.permute(0, 2, 3, 1).contiguous()  # channels last   [b, h, w, c]
        b = x1.size()  # b, h, w, c
        x1 = x1.view(b[0] * b[1], b[2], b[3])
        x2, _ = self.brnn(x1)
        xsz = x.size()
        x3 = x2.view(xsz[0], xsz[2], xsz[3], 256)  # torch.Size([4, 20, 20, 256])
        x3 = x3.permute(0, 3, 1, 2).contiguous()  # channels first [b, c, h, w]
        x3 = self.lstm_fc(x3)
        x = x3
        cls = self.rpn_class(x)
        regr = self.rpn_regress(x)
        cls = cls.permute(0, 2, 3, 1).contiguous()
        regr = regr.permute(0, 2, 3, 1).contiguous()
        cls = cls.view(cls.size(0), cls.size(1) * cls.size(2) * 10, 2)
        regr = regr.view(regr.size(0), regr.size(1) * regr.size(2) * 10, 2)
        return cls, regr


4.3、CTPN网络结构搭建

import torch.nn as nn
from collections import OrderedDict
class BidirectionalLSTM(nn.Module):
    def __init__(self, nIn, nHidden, nOut):
        super(BidirectionalLSTM, self).__init__()
        self.rnn = nn.LSTM(nIn, nHidden, bidirectional=True)
        self.embedding = nn.Linear(nHidden * 2, nOut)
    def forward(self, input):
        recurrent, _ = self.rnn(input)
        T, b, h = recurrent.size()
        t_rec = recurrent.view(T * b, h)
        output = self.embedding(t_rec)  # [T * b, nOut]
        output = output.view(T, b, -1)
        return output
class CRNN(nn.Module):
    def __init__(self, imgH, nc, nclass, nh, leakyRelu=False):
        super(CRNN, self).__init__()
        assert imgH % 16 == 0, 'imgH has to be a multiple of 16'
        # 1x32x128
        self.conv1 = nn.Conv2d(nc, 64, 3, 1, 1)
        self.relu1 = nn.ReLU(True)
        self.pool1 = nn.MaxPool2d(2, 2)
        # 64x16x64
        self.conv2 = nn.Conv2d(64, 128, 3, 1, 1)
        self.relu2 = nn.ReLU(True)
        self.pool2 = nn.MaxPool2d(2, 2)
        # 128x8x32
        self.conv3_1 = nn.Conv2d(128, 256, 3, 1, 1)
        self.bn3 = nn.BatchNorm2d(256)
        self.relu3_1 = nn.ReLU(True)
        self.conv3_2 = nn.Conv2d(256, 256, 3, 1, 1)
        self.relu3_2 = nn.ReLU(True)
        self.pool3 = nn.MaxPool2d((2, 2), (2, 1), (0, 1))
        # 256x4x16
        self.conv4_1 = nn.Conv2d(256, 512, 3, 1, 1)
        self.bn4 = nn.BatchNorm2d(512)
        self.relu4_1 = nn.ReLU(True)
        self.conv4_2 = nn.Conv2d(512, 512, 3, 1, 1)
        self.relu4_2 = nn.ReLU(True)
        self.pool4 = nn.MaxPool2d((2, 2), (2, 1), (0, 1))
        # 512x2x16
        self.conv5 = nn.Conv2d(512, 512, 2, 1, 0)
        self.bn5 = nn.BatchNorm2d(512)
        self.relu5 = nn.ReLU(True)
        # 512x1x16
        self.rnn = nn.Sequential(
            BidirectionalLSTM(512, nh, nh),
            BidirectionalLSTM(nh, nh, nclass))
    def forward(self, input):
        # conv features
        x = self.pool1(self.relu1(self.conv1(input)))
        x = self.pool2(self.relu2(self.conv2(x)))
        x = self.pool3(self.relu3_2(self.conv3_2(self.relu3_1(self.bn3(self.conv3_1(x))))))
        x = self.pool4(self.relu4_2(self.conv4_2(self.relu4_1(self.bn4(self.conv4_1(x))))))
        conv = self.relu5(self.bn5(self.conv5(x)))
        # print(conv.size())
        b, c, h, w = conv.size()
        assert h == 1, "the height of conv must be 1"
        conv = conv.squeeze(2)
        conv = conv.permute(2, 0, 1)  # [w, b, c]
        # rnn features
        output = self.rnn(conv)
        return output
class CRNN_v2(nn.Module):
    def __init__(self, imgH, nc, nclass, nh, leakyRelu=False):
        super(CRNN_v2, self).__init__()
        assert imgH % 16 == 0, 'imgH has to be a multiple of 16'
        # 1x32x128
        self.conv1_1 = nn.Conv2d(nc, 32, 3, 1, 1)
        self.bn1_1 = nn.BatchNorm2d(32)
        self.relu1_1 = nn.ReLU(True)
        self.conv1_2 = nn.Conv2d(32, 64, 3, 1, 1)
        self.bn1_2 = nn.BatchNorm2d(64)
        self.relu1_2 = nn.ReLU(True)
        self.pool1 = nn.MaxPool2d(2, 2)
        # 64x16x64
        self.conv2_1 = nn.Conv2d(64, 64, 3, 1, 1)
        self.bn2_1 = nn.BatchNorm2d(64)
        self.relu2_1 = nn.ReLU(True)
        self.conv2_2 = nn.Conv2d(64, 128, 3, 1, 1)
        self.bn2_2 = nn.BatchNorm2d(128)
        self.relu2_2 = nn.ReLU(True)
        self.pool2 = nn.MaxPool2d(2, 2)
        # 128x8x32
        self.conv3_1 = nn.Conv2d(128, 96, 3, 1, 1)
        self.bn3_1 = nn.BatchNorm2d(96)
        self.relu3_1 = nn.ReLU(True)
        self.conv3_2 = nn.Conv2d(96, 192, 3, 1, 1)
        self.bn3_2 = nn.BatchNorm2d(192)
        self.relu3_2 = nn.ReLU(True)
        self.pool3 = nn.MaxPool2d((2, 2), (2, 1), (0, 1))
        # 192x4x32
        self.conv4_1 = nn.Conv2d(192, 128, 3, 1, 1)
        self.bn4_1 = nn.BatchNorm2d(128)
        self.relu4_1 = nn.ReLU(True)
        self.conv4_2 = nn.Conv2d(128, 256, 3, 1, 1)
        self.bn4_2 = nn.BatchNorm2d(256)
        self.relu4_2 = nn.ReLU(True)
        self.pool4 = nn.MaxPool2d((2, 2), (2, 1), (0, 1))
        # 256x2x32
        self.bn5 = nn.BatchNorm2d(256)
        # 256x2x32
        self.rnn = nn.Sequential(
            BidirectionalLSTM(512, nh, nh),
            BidirectionalLSTM(nh, nh, nclass))
    def forward(self, input):
        # conv features
        x = self.pool1(self.relu1_2(self.bn1_2(self.conv1_2(self.relu1_1(self.bn1_1(self.conv1_1(input)))))))
        x = self.pool2(self.relu2_2(self.bn2_2(self.conv2_2(self.relu2_1(self.bn2_1(self.conv2_1(x)))))))
        x = self.pool3(self.relu3_2(self.bn3_2(self.conv3_2(self.relu3_1(self.bn3_1(self.conv3_1(x)))))))
        x = self.pool4(self.relu4_2(self.bn4_2(self.conv4_2(self.relu4_1(self.bn4_1(self.conv4_1(x)))))))
        conv = self.bn5(x)
        # print(conv.size())
        b, c, h, w = conv.size()
        assert h == 2, "the height of conv must be 2"
        conv = conv.reshape([b,c*h,w])
        conv = conv.permute(2, 0, 1)  # [w, b, c]
        # rnn features
        output = self.rnn(conv)
        return output
def conv3x3(nIn, nOut, stride=1):
    # "3x3 convolution with padding"
    return nn.Conv2d( nIn, nOut, kernel_size=3, stride=stride, padding=1, bias=False )
class basic_res_block(nn.Module):
    def __init__(self, nIn, nOut, stride=1, downsample=None):
        super( basic_res_block, self ).__init__()
        m = OrderedDict()
        m['conv1'] = conv3x3( nIn, nOut, stride )
        m['bn1'] = nn.BatchNorm2d( nOut )
        m['relu1'] = nn.ReLU( inplace=True )
        m['conv2'] = conv3x3( nOut, nOut )
        m['bn2'] = nn.BatchNorm2d( nOut )
        self.group1 = nn.Sequential( m )
        self.relu = nn.Sequential( nn.ReLU( inplace=True ) )
        self.downsample = downsample
    def forward(self, x):
        if self.downsample is not None:
            residual = self.downsample( x )
        else:
            residual = x
        out = self.group1( x ) + residual
        out = self.relu( out )
        return out
class CRNN_res(nn.Module):
    def __init__(self, imgH, nc, nclass, nh):
        super(CRNN_res, self).__init__()
        assert imgH % 16 == 0, 'imgH has to be a multiple of 16'
        self.conv1 = nn.Conv2d(nc, 64, 3, 1, 1)
        self.relu1 = nn.ReLU(True)
        self.res1 = basic_res_block(64, 64)
        # 1x32x128
        down1 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(128))
        self.res2_1 = basic_res_block( 64, 128, 2, down1 )
        self.res2_2 = basic_res_block(128,128)
        # 64x16x64
        down2 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(256))
        self.res3_1 = basic_res_block(128, 256, 2, down2)
        self.res3_2 = basic_res_block(256, 256)
        self.res3_3 = basic_res_block(256, 256)
        # 128x8x32
        down3 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=1, stride=(2, 1), bias=False),nn.BatchNorm2d(512))
        self.res4_1 = basic_res_block(256, 512, (2, 1), down3)
        self.res4_2 = basic_res_block(512, 512)
        self.res4_3 = basic_res_block(512, 512)
        # 256x4x16
        self.pool = nn.AvgPool2d((2, 2), (2, 1), (0, 1))
        # 512x2x16
        self.conv5 = nn.Conv2d(512, 512, 2, 1, 0)
        self.bn5 = nn.BatchNorm2d(512)
        self.relu5 = nn.ReLU(True)
        # 512x1x16
        self.rnn = nn.Sequential(
            BidirectionalLSTM(512, nh, nh),
            BidirectionalLSTM(nh, nh, nclass))
    def forward(self, input):
        # conv features
        x = self.res1(self.relu1(self.conv1(input)))
        x = self.res2_2(self.res2_1(x))
        x = self.res3_3(self.res3_2(self.res3_1(x)))
        x = self.res4_3(self.res4_2(self.res4_1(x)))
        x = self.pool(x)
        conv = self.relu5(self.bn5(self.conv5(x)))
        # print(conv.size())
        b, c, h, w = conv.size()
        assert h == 1, "the height of conv must be 1"
        conv = conv.squeeze(2)
        conv = conv.permute(2, 0, 1)  # [w, b, c]
        # rnn features
        output = self.rnn(conv)
        return output
if __name__ == '__main__':
    pass

5.4、中英文图片的识别结果展示



相关文章
|
8月前
|
文字识别 异构计算 Python
关于Github中开源OCR项目的实验过程与思考
新手尝试Git clone Python OCR项目,遇到各种报错。测试了Paddle OCR、Tesseract OCR和EasyOCR。Paddle OCR因平台限制未能在Notebook部署,Tesseract OCR在Colab成功但无法复现。EasyOCR最终在阿里云天池和Colab部署成功,但天池GPU资源不足。建议使用魔搭社区的实例,阿里云提供免费OCR服务。寻求简单OCR项目推荐。附EasyOCR安装和使用代码。
260 2
|
2月前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。
|
6月前
|
文字识别 Java Spring
文本,文字识别,SpringBoot服务开发,SpringBoot如何提供上传服务,接口的设计,它做了将Base64重新转为图片,SpringBoot的应用实例,项目基础搭建
文本,文字识别,SpringBoot服务开发,SpringBoot如何提供上传服务,接口的设计,它做了将Base64重新转为图片,SpringBoot的应用实例,项目基础搭建
|
8月前
|
机器学习/深度学习 文字识别 算法
【Keras计算机视觉OCR】文字识别算法中DenseNet、LSTM、CTC、Attention的讲解(图文解释 超详细)
【Keras计算机视觉OCR】文字识别算法中DenseNet、LSTM、CTC、Attention的讲解(图文解释 超详细)
328 0
|
8月前
|
机器学习/深度学习 文字识别 算法
【Keras计算机视觉OCR文字识别】文字检测算法中CTPN、CRAFT的讲解(图文解释 超详细)
【Keras计算机视觉OCR文字识别】文字检测算法中CTPN、CRAFT的讲解(图文解释 超详细)
273 0
|
机器学习/深度学习 人工智能 文字识别
深度学习应用篇-计算机视觉-OCR光学字符识别[7]:OCR综述、常用CRNN识别方法、DBNet、CTPN检测方法等、评估指标、应用场景
深度学习应用篇-计算机视觉-OCR光学字符识别[7]:OCR综述、常用CRNN识别方法、DBNet、CTPN检测方法等、评估指标、应用场景
深度学习应用篇-计算机视觉-OCR光学字符识别[7]:OCR综述、常用CRNN识别方法、DBNet、CTPN检测方法等、评估指标、应用场景
|
存储 文字识别 算法
基于飞桨实现项目2 中文场景文字识别
基于飞桨实现项目2 中文场景文字识别
290 0
基于飞桨实现项目2 中文场景文字识别
|
机器学习/深度学习 文字识别 算法
【OCR学习笔记】9、OCR中文项目综合实践(CTPN+CRNN+CTC Loss原理讲解)(二)
【OCR学习笔记】9、OCR中文项目综合实践(CTPN+CRNN+CTC Loss原理讲解)(二)
372 0
|
6月前
|
人工智能 文字识别 开发工具
印刷文字识别使用问题之是否支持识别并返回文字在图片中的位置信息
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。
|
6月前
|
人工智能 JSON 文字识别
印刷文字识别使用问题之如何数电发票进行识别
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。

热门文章

最新文章