ros/melodic/include/sensor_msgs中激光雷达的数据结构

本文涉及的产品
资源编排,不限时长
简介: ros/melodic/include/sensor_msgs中激光雷达的数据结构
#ifndef SENSOR_MSGS_MESSAGE_LASERSCAN_H
#define SENSOR_MSGS_MESSAGE_LASERSCAN_H
#include <string>
#include <vector>
#include <map>
#include <ros/types.h>
#include <ros/serialization.h>
#include <ros/builtin_message_traits.h>
#include <ros/message_operations.h>
#include <std_msgs/Header.h>
namespace sensor_msgs
{
template <class ContainerAllocator>
struct LaserScan_
{
  typedef LaserScan_<ContainerAllocator> Type;
  LaserScan_()
    : header()//是一个结构体,包含seq、stamp、frame_id。seq扫描顺序增加的id序列,
stamp激光数据的时间戳,frame_id 是扫描数据的名字。
    , angle_min(0.0)//激光开始扫描的角度
    , angle_max(0.0)//激光结束扫描的角度
    , angle_increment(0.0)//激光每次扫描增加的角度
    , time_increment(0.0)// 激光测量的时间间隔
    , scan_time(0.0)//激光扫描的时间间隔
    , range_min(0.0)//激光测距的最小值
    , range_max(0.0)//激光测距的最大值
    , ranges()//距离数据,是一个数组,激光转一周的测量数据
    , intensities()  {//强度数据,是一个数组,与设备有关
    }
  LaserScan_(const ContainerAllocator& _alloc)
    : header(_alloc)
    , angle_min(0.0)
    , angle_max(0.0)
    , angle_increment(0.0)
    , time_increment(0.0)
    , scan_time(0.0)
    , range_min(0.0)
    , range_max(0.0)
    , ranges(_alloc)
    , intensities(_alloc)  {
  (void)_alloc;
    }
 typedef  ::std_msgs::Header_<ContainerAllocator>  _header_type;
  _header_type header;
   typedef float _angle_min_type;
  _angle_min_type angle_min;
   typedef float _angle_max_type;
  _angle_max_type angle_max;
   typedef float _angle_increment_type;
  _angle_increment_type angle_increment;
   typedef float _time_increment_type;
  _time_increment_type time_increment;
   typedef float _scan_time_type;
  _scan_time_type scan_time;
   typedef float _range_min_type;
  _range_min_type range_min;
   typedef float _range_max_type;
  _range_max_type range_max;
   typedef std::vector<float, typename ContainerAllocator::template rebind<float>::other >  _ranges_type;
  _ranges_type ranges;
   typedef std::vector<float, typename ContainerAllocator::template rebind<float>::other >  _intensities_type;
  _intensities_type intensities;
  typedef boost::shared_ptr< ::sensor_msgs::LaserScan_<ContainerAllocator> > Ptr;
  typedef boost::shared_ptr< ::sensor_msgs::LaserScan_<ContainerAllocator> const> ConstPtr;
}; // struct LaserScan_
typedef ::sensor_msgs::LaserScan_<std::allocator<void> > LaserScan;
typedef boost::shared_ptr< ::sensor_msgs::LaserScan > LaserScanPtr;
typedef boost::shared_ptr< ::sensor_msgs::LaserScan const> LaserScanConstPtr;
// constants requiring out of line definition
template<typename ContainerAllocator>
std::ostream& operator<<(std::ostream& s, const ::sensor_msgs::LaserScan_<ContainerAllocator> & v)
{
ros::message_operations::Printer< ::sensor_msgs::LaserScan_<ContainerAllocator> >::stream(s, "", v);
return s;
}
template<typename ContainerAllocator1, typename ContainerAllocator2>
bool operator==(const ::sensor_msgs::LaserScan_<ContainerAllocator1> & lhs, const ::sensor_msgs::LaserScan_<ContainerAllocator2> & rhs)
{
  return lhs.header == rhs.header &&
    lhs.angle_min == rhs.angle_min &&
    lhs.angle_max == rhs.angle_max &&
    lhs.angle_increment == rhs.angle_increment &&
    lhs.time_increment == rhs.time_increment &&
    lhs.scan_time == rhs.scan_time &&
    lhs.range_min == rhs.range_min &&
    lhs.range_max == rhs.range_max &&
    lhs.ranges == rhs.ranges &&
    lhs.intensities == rhs.intensities;
}
template<typename ContainerAllocator1, typename ContainerAllocator2>
bool operator!=(const ::sensor_msgs::LaserScan_<ContainerAllocator1> & lhs, const ::sensor_msgs::LaserScan_<ContainerAllocator2> & rhs)
{
  return !(lhs == rhs);
}
} // namespace sensor_msgs
namespace ros
{
namespace message_traits
{
template <class ContainerAllocator>
struct IsFixedSize< ::sensor_msgs::LaserScan_<ContainerAllocator> >
  : FalseType
  { };
template <class ContainerAllocator>
struct IsFixedSize< ::sensor_msgs::LaserScan_<ContainerAllocator> const>
  : FalseType
  { };
template <class ContainerAllocator>
struct IsMessage< ::sensor_msgs::LaserScan_<ContainerAllocator> >
  : TrueType
  { };
template <class ContainerAllocator>
struct IsMessage< ::sensor_msgs::LaserScan_<ContainerAllocator> const>
  : TrueType
  { };
template <class ContainerAllocator>
struct HasHeader< ::sensor_msgs::LaserScan_<ContainerAllocator> >
  : TrueType
  { };
template <class ContainerAllocator>
struct HasHeader< ::sensor_msgs::LaserScan_<ContainerAllocator> const>
  : TrueType
  { };
template<class ContainerAllocator>
struct MD5Sum< ::sensor_msgs::LaserScan_<ContainerAllocator> >
{
  static const char* value()
  {
    return "90c7ef2dc6895d81024acba2ac42f369";
  }
  static const char* value(const ::sensor_msgs::LaserScan_<ContainerAllocator>&) { return value(); }
  static const uint64_t static_value1 = 0x90c7ef2dc6895d81ULL;
  static const uint64_t static_value2 = 0x024acba2ac42f369ULL;
};
template<class ContainerAllocator>
struct DataType< ::sensor_msgs::LaserScan_<ContainerAllocator> >
{
  static const char* value()
  {
    return "sensor_msgs/LaserScan";
  }
  static const char* value(const ::sensor_msgs::LaserScan_<ContainerAllocator>&) { return value(); }
};
template<class ContainerAllocator>
struct Definition< ::sensor_msgs::LaserScan_<ContainerAllocator> >
{
  static const char* value()
  {
    return "# Single scan from a planar laser range-finder\n"
"#\n"
"# If you have another ranging device with different behavior (e.g. a sonar\n"
"# array), please find or create a different message, since applications\n"
"# will make fairly laser-specific assumptions about this data\n"
"\n"
"Header header            # timestamp in the header is the acquisition time of \n"
"                         # the first ray in the scan.\n"
"                         #\n"
"                         # in frame frame_id, angles are measured around \n"
"                         # the positive Z axis (counterclockwise, if Z is up)\n"
"                         # with zero angle being forward along the x axis\n"
"                         \n"
"float32 angle_min        # start angle of the scan [rad]\n"
"float32 angle_max        # end angle of the scan [rad]\n"
"float32 angle_increment  # angular distance between measurements [rad]\n"
"\n"
"float32 time_increment   # time between measurements [seconds] - if your scanner\n"
"                         # is moving, this will be used in interpolating position\n"
"                         # of 3d points\n"
"float32 scan_time        # time between scans [seconds]\n"
"\n"
"float32 range_min        # minimum range value [m]\n"
"float32 range_max        # maximum range value [m]\n"
"\n"
"float32[] ranges         # range data [m] (Note: values < range_min or > range_max should be discarded)\n"
"float32[] intensities    # intensity data [device-specific units].  If your\n"
"                         # device does not provide intensities, please leave\n"
"                         # the array empty.\n"
"\n"
"================================================================================\n"
"MSG: std_msgs/Header\n"
"# Standard metadata for higher-level stamped data types.\n"
"# This is generally used to communicate timestamped data \n"
"# in a particular coordinate frame.\n"
"# \n"
"# sequence ID: consecutively increasing ID \n"
"uint32 seq\n"
"#Two-integer timestamp that is expressed as:\n"
"# * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs')\n"
"# * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs')\n"
"# time-handling sugar is provided by the client library\n"
"time stamp\n"
"#Frame this data is associated with\n"
"string frame_id\n"
;
  }
  static const char* value(const ::sensor_msgs::LaserScan_<ContainerAllocator>&) { return value(); }
};
} // namespace message_traits
} // namespace ros
namespace ros
{
namespace serialization
{
  template<class ContainerAllocator> struct Serializer< ::sensor_msgs::LaserScan_<ContainerAllocator> >
  {
    template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
    {
      stream.next(m.header);
      stream.next(m.angle_min);
      stream.next(m.angle_max);
      stream.next(m.angle_increment);
      stream.next(m.time_increment);
      stream.next(m.scan_time);
      stream.next(m.range_min);
      stream.next(m.range_max);
      stream.next(m.ranges);
      stream.next(m.intensities);
    }
    ROS_DECLARE_ALLINONE_SERIALIZER
  }; // struct LaserScan_
} // namespace serialization
} // namespace ros
namespace ros
{
namespace message_operations
{
template<class ContainerAllocator>
struct Printer< ::sensor_msgs::LaserScan_<ContainerAllocator> >
{
  template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::sensor_msgs::LaserScan_<ContainerAllocator>& v)
  {
    s << indent << "header: ";
    s << std::endl;
    Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + "  ", v.header);
    s << indent << "angle_min: ";
    Printer<float>::stream(s, indent + "  ", v.angle_min);
    s << indent << "angle_max: ";
    Printer<float>::stream(s, indent + "  ", v.angle_max);
    s << indent << "angle_increment: ";
    Printer<float>::stream(s, indent + "  ", v.angle_increment);
    s << indent << "time_increment: ";
    Printer<float>::stream(s, indent + "  ", v.time_increment);
    s << indent << "scan_time: ";
    Printer<float>::stream(s, indent + "  ", v.scan_time);
    s << indent << "range_min: ";
    Printer<float>::stream(s, indent + "  ", v.range_min);
    s << indent << "range_max: ";
    Printer<float>::stream(s, indent + "  ", v.range_max);
    s << indent << "ranges[]" << std::endl;
    for (size_t i = 0; i < v.ranges.size(); ++i)
    {
      s << indent << "  ranges[" << i << "]: ";
      Printer<float>::stream(s, indent + "  ", v.ranges[i]);
    }
    s << indent << "intensities[]" << std::endl;
    for (size_t i = 0; i < v.intensities.size(); ++i)
    {
      s << indent << "  intensities[" << i << "]: ";
      Printer<float>::stream(s, indent + "  ", v.intensities[i]);
    }
  }
};
} // namespace message_operations
} // namespace ros
#endif // SENSOR_MSGS_MESSAGE_LASERSCAN_H
相关实践学习
使用ROS创建VPC和VSwitch
本场景主要介绍如何利用阿里云资源编排服务,定义资源编排模板,实现自动化创建阿里云专有网络和交换机。
阿里云资源编排ROS使用教程
资源编排(Resource Orchestration)是一种简单易用的云计算资源管理和自动化运维服务。用户通过模板描述多个云计算资源的依赖关系、配置等,并自动完成所有资源的创建和配置,以达到自动化部署、运维等目的。编排模板同时也是一种标准化的资源和应用交付方式,并且可以随时编辑修改,使基础设施即代码(Infrastructure as Code)成为可能。 产品详情:https://www.aliyun.com/product/ros/
目录
相关文章
|
Python
Ubuntu18.04 ROS Melodic安装和卸载
Ubuntu18.04 ROS Melodic安装和卸载简单过程
311 0
|
存储 IDE Ubuntu
【基于ROS Melodic环境安装rosserial arduino】
【基于ROS Melodic环境安装rosserial arduino】
225 0
|
Ubuntu Python
ROS Melodic Arbotix报错
ROS Melodic Arbotix报错
|
IDE Ubuntu 机器人
Ubuntu 18.04 配置Ros melodic
Ubuntu 18.04 配置Ros melodic
【1. ubuntu18.04安装ROS Melodic】
【1. ubuntu18.04安装ROS Melodic】
338 0
|
Ubuntu Linux
Ubuntu 18.04.05 LTS配置ROS Melodic各种问题详细解决(填坑)
Ubuntu 18.04.05 LTS配置ROS Melodic各种问题详细解决(填坑)
308 0
Ubuntu 18.04.05 LTS配置ROS Melodic各种问题详细解决(填坑)
解决安装 ROS Melodic 后终端出现NameError: name ‘reload‘ is not defined的问题
解决安装 ROS Melodic 后终端出现NameError: name ‘reload‘ is not defined的问题
158 0
ROS Melodic安装教程
ROS Melodic安装教程
325 0
ROS——深度图转换伪面阵激光——depthimage_to_laserscan 功能包
ROS——深度图转换伪面阵激光——depthimage_to_laserscan 功能包
ROS——深度图转换伪面阵激光——depthimage_to_laserscan 功能包
|
传感器 C++
ROS仿真中 读取 turtlebot3 扫描雷达传感器数据 求 前方距离和最短距离(对应方向)
ROS仿真中 读取 turtlebot3 扫描雷达传感器数据 求 前方距离和最短距离(对应方向)
ROS仿真中  读取  turtlebot3  扫描雷达传感器数据  求 前方距离和最短距离(对应方向)

推荐镜像

更多
下一篇
DataWorks