云端炼丹,算力白嫖,基于云端GPU(Colab)使用So-vits库制作AI特朗普演唱《国际歌》

简介: 人工智能AI技术早已深入到人们生活的每一个角落,君不见AI孙燕姿的歌声此起彼伏,不绝于耳,但并不是每个人都拥有一块N卡,没有GPU的日子总是不好过的,但是没关系,山人有妙计,本次我们基于Google的Colab免费云端服务器来搭建深度学习环境,制作AI特朗普,让他高唱《国际歌》。 Colab(全名Colaboratory ),它是Google公司的一款基于云端的基础免费服务器产品,可以在B端,也就是浏览器里面编写和执行Python代码,非常方便,贴心的是,Colab可以给用户分配免费的GPU进行使用,对于没有N卡的朋友来说,这已经远远超出了业界良心的范畴,简直就是在做慈善事业。

人工智能AI技术早已深入到人们生活的每一个角落,君不见AI孙燕姿的歌声此起彼伏,不绝于耳,但并不是每个人都拥有一块N卡,没有GPU的日子总是不好过的,但是没关系,山人有妙计,本次我们基于Google的Colab免费云端服务器来搭建深度学习环境,制作AI特朗普,让他高唱《国际歌》。

Colab(全名Colaboratory ),它是Google公司的一款基于云端的基础免费服务器产品,可以在B端,也就是浏览器里面编写和执行Python代码,非常方便,贴心的是,Colab可以给用户分配免费的GPU进行使用,对于没有N卡的朋友来说,这已经远远超出了业界良心的范畴,简直就是在做慈善事业。

配置Colab

Colab是基于Google云盘的产品,我们可以将深度学习的Python脚本、训练好的模型、以及训练集等数据直接存放在云盘中,然后通过Colab执行即可。

首先访问Google云盘:drive.google.com

随后点击新建,选择关联更多应用:

接着安装Colab即可:

至此,云盘和Colab就关联好了,现在我们可以新建一个脚本文件my\_sovits.ipynb文件,键入代码:

hello colab

随后,按快捷键 ctrl + 回车,即可运行代码:

这里需要注意的是,Colab使用的是基于Jupyter Notebook的ipynb格式的Python代码。

Jupyter Notebook是以网页的形式打开,可以在网页页面中直接编写代码和运行代码,代码的运行结果也会直接在代码块下显示。如在编程过程中需要编写说明文档,可在同一个页面中直接编写,便于作及时的说明和解释。

随后设置一下显卡类型:

接着运行命令,查看GPU版本:

!/usr/local/cuda/bin/nvcc --version  
  
!nvidia-smi

程序返回:

nvcc: NVIDIA (R) Cuda compiler driver  
Copyright (c) 2005-2022 NVIDIA Corporation  
Built on Wed_Sep_21_10:33:58_PDT_2022  
Cuda compilation tools, release 11.8, V11.8.89  
Build cuda_11.8.r11.8/compiler.31833905_0  
Tue May 16 04:49:23 2023         
+-----------------------------------------------------------------------------+  
| NVIDIA-SMI 525.85.12    Driver Version: 525.85.12    CUDA Version: 12.0     |  
|-------------------------------+----------------------+----------------------+  
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |  
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |  
|                               |                      |               MIG M. |  
|===============================+======================+======================|  
|   0  Tesla T4            Off  | 00000000:00:04.0 Off |                    0 |  
| N/A   65C    P8    13W /  70W |      0MiB / 15360MiB |      0%      Default |  
|                               |                      |                  N/A |  
+-------------------------------+----------------------+----------------------+  
                                                                                 
+-----------------------------------------------------------------------------+  
| Processes:                                                                  |  
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |  
|        ID   ID                                                   Usage      |  
|=============================================================================|  
|  No running processes found                                                 |  
+-----------------------------------------------------------------------------+

这里建议选择Tesla T4的显卡类型,性能更突出。

至此Colab就配置好了。

配置So-vits

下面我们配置so-vits环境,可以通过pip命令安装一些基础依赖:

!pip install pyworld==0.3.2  
!pip install numpy==1.23.5

注意jupyter语言是通过叹号来运行命令。

注意,由于不是本地环境,有的时候colab会提醒:

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/  
Collecting numpy==1.23.5  
  Downloading numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB)  
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 17.1/17.1 MB 80.1 MB/s eta 0:00:00  
Installing collected packages: numpy  
  Attempting uninstall: numpy  
    Found existing installation: numpy 1.22.4  
    Uninstalling numpy-1.22.4:  
      Successfully uninstalled numpy-1.22.4  
Successfully installed numpy-1.23.5  
WARNING: The following packages were previously imported in this runtime:  
  [numpy]  
You must restart the runtime in order to use newly installed versions.

此时numpy库需要重启runtime才可以导入操作。

重启runtime后,需要再重新安装一次,直到系统提示依赖已经存在:

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/  
Requirement already satisfied: numpy==1.23.5 in /usr/local/lib/python3.10/dist-packages (1.23.5)

随后,克隆so-vits项目,并且安装项目的依赖:

import os  
import glob  
!git clone https://github.com/effusiveperiscope/so-vits-svc -b eff-4.0  
os.chdir('/content/so-vits-svc')  
# install requirements one-at-a-time to ignore exceptions  
!cat requirements.txt | xargs -n 1 pip install --extra-index-url https://download.pytorch.org/whl/cu117  
!pip install praat-parselmouth  
!pip install ipywidgets  
!pip install huggingface_hub  
!pip install pip==23.0.1 # fix pip version for fairseq install  
!pip install fairseq==0.12.2  
!jupyter nbextension enable --py widgetsnbextension  
existing_files = glob.glob('/content/**/*.*', recursive=True)  
!pip install --upgrade protobuf==3.9.2  
!pip uninstall -y tensorflow  
!pip install tensorflow==2.11.0

安装好依赖之后,定义一些前置工具方法:

os.chdir('/content/so-vits-svc') # force working-directory to so-vits-svc - this line is just for safety and is probably not required  
  
import tarfile  
import os  
from zipfile import ZipFile  
# taken from https://github.com/CookiePPP/cookietts/blob/master/CookieTTS/utils/dataset/extract_unknown.py  
def extract(path):  
    if path.endswith(".zip"):  
        with ZipFile(path, 'r') as zipObj:  
           zipObj.extractall(os.path.split(path)[0])  
    elif path.endswith(".tar.bz2"):  
        tar = tarfile.open(path, "r:bz2")  
        tar.extractall(os.path.split(path)[0])  
        tar.close()  
    elif path.endswith(".tar.gz"):  
        tar = tarfile.open(path, "r:gz")  
        tar.extractall(os.path.split(path)[0])  
        tar.close()  
    elif path.endswith(".tar"):  
        tar = tarfile.open(path, "r:")  
        tar.extractall(os.path.split(path)[0])  
        tar.close()  
    elif path.endswith(".7z"):  
        import py7zr  
        archive = py7zr.SevenZipFile(path, mode='r')  
        archive.extractall(path=os.path.split(path)[0])  
        archive.close()  
    else:  
        raise NotImplementedError(f"{path} extension not implemented.")  
  
# taken from https://github.com/CookiePPP/cookietts/tree/master/CookieTTS/_0_download/scripts  
  
# megatools download urls  
win64_url = "https://megatools.megous.com/builds/builds/megatools-1.11.1.20230212-win64.zip"  
win32_url = "https://megatools.megous.com/builds/builds/megatools-1.11.1.20230212-win32.zip"  
linux_url = "https://megatools.megous.com/builds/builds/megatools-1.11.1.20230212-linux-x86_64.tar.gz"  
# download megatools  
from sys import platform  
import os  
import urllib.request  
import subprocess  
from time import sleep  
  
if platform == "linux" or platform == "linux2":  
        dl_url = linux_url  
elif platform == "darwin":  
    raise NotImplementedError('MacOS not supported.')  
elif platform == "win32":  
        dl_url = win64_url  
else:  
    raise NotImplementedError ('Unknown Operating System.')  
  
dlname = dl_url.split("/")[-1]  
if dlname.endswith(".zip"):  
    binary_folder = dlname[:-4] # remove .zip  
elif dlname.endswith(".tar.gz"):  
    binary_folder = dlname[:-7] # remove .tar.gz  
else:  
    raise NameError('downloaded megatools has unknown archive file extension!')  
  
if not os.path.exists(binary_folder):  
    print('"megatools" not found. Downloading...')  
    if not os.path.exists(dlname):  
        urllib.request.urlretrieve(dl_url, dlname)  
    assert os.path.exists(dlname), 'failed to download.'  
    extract(dlname)  
    sleep(0.10)  
    os.unlink(dlname)  
    print("Done!")  
  
  
binary_folder = os.path.abspath(binary_folder)  
  
def megadown(download_link, filename='.', verbose=False):  
    """Use megatools binary executable to download files and folders from MEGA.nz ."""  
    filename = ' --path "'+os.path.abspath(filename)+'"' if filename else ""  
    wd_old = os.getcwd()  
    os.chdir(binary_folder)  
    try:  
        if platform == "linux" or platform == "linux2":  
            subprocess.call(f'./megatools dl{filename}{" --debug http" if verbose else ""} {download_link}', shell=True)  
        elif platform == "win32":  
            subprocess.call(f'megatools.exe dl{filename}{" --debug http" if verbose else ""} {download_link}', shell=True)  
    except:  
        os.chdir(wd_old) # don't let user stop download without going back to correct directory first  
        raise  
    os.chdir(wd_old)  
    return filename  
  
import urllib.request  
from tqdm import tqdm  
import gdown  
from os.path import exists  
  
def request_url_with_progress_bar(url, filename):  
    class DownloadProgressBar(tqdm):  
        def update_to(self, b=1, bsize=1, tsize=None):  
            if tsize is not None:  
                self.total = tsize  
            self.update(b * bsize - self.n)  
      
    def download_url(url, filename):  
        with DownloadProgressBar(unit='B', unit_scale=True,  
                                 miniters=1, desc=url.split('/')[-1]) as t:  
            filename, headers = urllib.request.urlretrieve(url, filename=filename, reporthook=t.update_to)  
            print("Downloaded to "+filename)  
    download_url(url, filename)  
  
  
def download(urls, dataset='', filenames=None, force_dl=False, username='', password='', auth_needed=False):  
    assert filenames is None or len(urls) == len(filenames), f"number of urls does not match filenames. Expected {len(filenames)} urls, containing the files listed below.\n{filenames}"  
    assert not auth_needed or (len(username) and len(password)), f"username and password needed for {dataset} Dataset"  
    if filenames is None:  
        filenames = [None,]*len(urls)  
    for i, (url, filename) in enumerate(zip(urls, filenames)):  
        print(f"Downloading File from {url}")  
        #if filename is None:  
        #    filename = url.split("/")[-1]  
        if filename and (not force_dl) and exists(filename):  
            print(f"{filename} Already Exists, Skipping.")  
            continue  
        if 'drive.google.com' in url:  
            assert 'https://drive.google.com/uc?id=' in url, 'Google Drive links should follow the format "https://drive.google.com/uc?id=1eQAnaoDBGQZldPVk-nzgYzRbcPSmnpv6".\nWhere id=XXXXXXXXXXXXXXXXX is the Google Drive Share ID.'  
            gdown.download(url, filename, quiet=False)  
        elif 'mega.nz' in url:  
            megadown(url, filename)  
        else:  
            #urllib.request.urlretrieve(url, filename=filename) # no progress bar  
            request_url_with_progress_bar(url, filename) # with progress bar  
  
import huggingface_hub  
import os  
import shutil  
  
class HFModels:  
    def __init__(self, repo = "therealvul/so-vits-svc-4.0",   
            model_dir = "hf_vul_models"):  
        self.model_repo = huggingface_hub.Repository(local_dir=model_dir,  
            clone_from=repo, skip_lfs_files=True)  
        self.repo = repo  
        self.model_dir = model_dir  
  
        self.model_folders = os.listdir(model_dir)  
        self.model_folders.remove('.git')  
        self.model_folders.remove('.gitattributes')  
  
    def list_models(self):  
        return self.model_folders  
  
    # Downloads model;  
    # copies config to target_dir and moves model to target_dir  
    def download_model(self, model_name, target_dir):  
        if not model_name in self.model_folders:  
            raise Exception(model_name + " not found")  
        model_dir = self.model_dir  
        charpath = os.path.join(model_dir,model_name)  
  
        gen_pt = next(x for x in os.listdir(charpath) if x.startswith("G_"))  
        cfg = next(x for x in os.listdir(charpath) if x.endswith("json"))  
        try:  
          clust = next(x for x in os.listdir(charpath) if x.endswith("pt"))  
        except StopIteration as e:  
          print("Note - no cluster model for "+model_name)  
          clust = None  
  
        if not os.path.exists(target_dir):  
            os.makedirs(target_dir, exist_ok=True)  
  
        gen_dir = huggingface_hub.hf_hub_download(repo_id = self.repo,  
            filename = model_name + "/" + gen_pt) # this is a symlink  
          
        if clust is not None:  
          clust_dir = huggingface_hub.hf_hub_download(repo_id = self.repo,  
              filename = model_name + "/" + clust) # this is a symlink  
          shutil.move(os.path.realpath(clust_dir), os.path.join(target_dir, clust))  
          clust_out = os.path.join(target_dir, clust)  
        else:  
          clust_out = None  
  
        shutil.copy(os.path.join(charpath,cfg),os.path.join(target_dir, cfg))  
        shutil.move(os.path.realpath(gen_dir), os.path.join(target_dir, gen_pt))  
  
        return {"config_path": os.path.join(target_dir,cfg),  
            "generator_path": os.path.join(target_dir,gen_pt),  
            "cluster_path": clust_out}  
  
# Example usage  
# vul_models = HFModels()  
# print(vul_models.list_models())  
# print("Applejack (singing)" in vul_models.list_models())  
# vul_models.download_model("Applejack (singing)","models/Applejack (singing)")  
  
    print("Finished!")

这些方法可以帮助我们下载、解压和加载模型。

音色模型下载和线上推理

接着将特朗普的音色模型和配置文件进行下载,下载地址是:

https://huggingface.co/Nardicality/so-vits-svc-4.0-models/tree/main/Trump18.5k

随后模型文件放到项目的models文件夹,配置文件则放入config文件夹。

接着将需要转换的歌曲上传到和项目平行的目录中。

运行代码:

import os  
import glob  
import json  
import copy  
import logging  
import io  
from ipywidgets import widgets  
from pathlib import Path  
from IPython.display import Audio, display  
  
os.chdir('/content/so-vits-svc')  
  
import torch  
from inference import infer_tool  
from inference import slicer  
from inference.infer_tool import Svc  
import soundfile  
import numpy as np  
  
MODELS_DIR = "models"  
  
def get_speakers():  
  speakers = []  
  for _,dirs,_ in os.walk(MODELS_DIR):  
    for folder in dirs:  
      cur_speaker = {}  
      # Look for G_****.pth  
      g = glob.glob(os.path.join(MODELS_DIR,folder,'G_*.pth'))  
      if not len(g):  
        print("Skipping "+folder+", no G_*.pth")  
        continue  
      cur_speaker["model_path"] = g[0]  
      cur_speaker["model_folder"] = folder  
  
      # Look for *.pt (clustering model)  
      clst = glob.glob(os.path.join(MODELS_DIR,folder,'*.pt'))  
      if not len(clst):  
        print("Note: No clustering model found for "+folder)  
        cur_speaker["cluster_path"] = ""  
      else:  
        cur_speaker["cluster_path"] = clst[0]  
  
      # Look for config.json  
      cfg = glob.glob(os.path.join(MODELS_DIR,folder,'*.json'))  
      if not len(cfg):  
        print("Skipping "+folder+", no config json")  
        continue  
      cur_speaker["cfg_path"] = cfg[0]  
      with open(cur_speaker["cfg_path"]) as f:  
        try:  
          cfg_json = json.loads(f.read())  
        except Exception as e:  
          print("Malformed config json in "+folder)  
        for name, i in cfg_json["spk"].items():  
          cur_speaker["name"] = name  
          cur_speaker["id"] = i  
          if not name.startswith('.'):  
            speakers.append(copy.copy(cur_speaker))  
  
    return sorted(speakers, key=lambda x:x["name"].lower())  
  
logging.getLogger('numba').setLevel(logging.WARNING)  
chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")  
existing_files = []  
slice_db = -40  
wav_format = 'wav'  
  
class InferenceGui():  
  def __init__(self):  
    self.speakers = get_speakers()  
    self.speaker_list = [x["name"] for x in self.speakers]  
    self.speaker_box = widgets.Dropdown(  
        options = self.speaker_list  
    )  
    display(self.speaker_box)  
  
    def convert_cb(btn):  
      self.convert()  
    def clean_cb(btn):  
      self.clean()  
  
    self.convert_btn = widgets.Button(description="Convert")  
    self.convert_btn.on_click(convert_cb)  
    self.clean_btn = widgets.Button(description="Delete all audio files")  
    self.clean_btn.on_click(clean_cb)  
  
    self.trans_tx = widgets.IntText(value=0, description='Transpose')  
    self.cluster_ratio_tx = widgets.FloatText(value=0.0,   
      description='Clustering Ratio')  
    self.noise_scale_tx = widgets.FloatText(value=0.4,   
      description='Noise Scale')  
    self.auto_pitch_ck = widgets.Checkbox(value=False, description=  
      'Auto pitch f0 (do not use for singing)')  
  
    display(self.trans_tx)  
    display(self.cluster_ratio_tx)  
    display(self.noise_scale_tx)  
    display(self.auto_pitch_ck)  
    display(self.convert_btn)  
    display(self.clean_btn)  
  
  def convert(self):  
    trans = int(self.trans_tx.value)  
    speaker = next(x for x in self.speakers if x["name"] ==   
          self.speaker_box.value)  
    spkpth2 = os.path.join(os.getcwd(),speaker["model_path"])  
    print(spkpth2)  
    print(os.path.exists(spkpth2))  
  
    svc_model = Svc(speaker["model_path"], speaker["cfg_path"],   
      cluster_model_path=speaker["cluster_path"])  
      
    input_filepaths = [f for f in glob.glob('/content/**/*.*', recursive=True)  
     if f not in existing_files and   
     any(f.endswith(ex) for ex in ['.wav','.flac','.mp3','.ogg','.opus'])]  
    for name in input_filepaths:  
      print("Converting "+os.path.split(name)[-1])  
      infer_tool.format_wav(name)  
  
      wav_path = str(Path(name).with_suffix('.wav'))  
      wav_name = Path(name).stem  
      chunks = slicer.cut(wav_path, db_thresh=slice_db)  
      audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)  
  
      audio = []  
      for (slice_tag, data) in audio_data:  
          print(f'#=====segment start, '  
              f'{round(len(data)/audio_sr, 3)}s======')  
            
          length = int(np.ceil(len(data) / audio_sr *  
              svc_model.target_sample))  
            
          if slice_tag:  
              print('jump empty segment')  
              _audio = np.zeros(length)  
          else:  
              # Padding "fix" for noise  
              pad_len = int(audio_sr * 0.5)  
              data = np.concatenate([np.zeros([pad_len]),  
                  data, np.zeros([pad_len])])  
              raw_path = io.BytesIO()  
              soundfile.write(raw_path, data, audio_sr, format="wav")  
              raw_path.seek(0)  
              _cluster_ratio = 0.0  
              if speaker["cluster_path"] != "":  
                _cluster_ratio = float(self.cluster_ratio_tx.value)  
              out_audio, out_sr = svc_model.infer(  
                  speaker["name"], trans, raw_path,  
                  cluster_infer_ratio = _cluster_ratio,  
                  auto_predict_f0 = bool(self.auto_pitch_ck.value),  
                  noice_scale = float(self.noise_scale_tx.value))  
              _audio = out_audio.cpu().numpy()  
              pad_len = int(svc_model.target_sample * 0.5)  
              _audio = _audio[pad_len:-pad_len]  
          audio.extend(list(infer_tool.pad_array(_audio, length)))  
            
      res_path = os.path.join('/content/',  
          f'{wav_name}_{trans}_key_'  
          f'{speaker["name"]}.{wav_format}')  
      soundfile.write(res_path, audio, svc_model.target_sample,  
          format=wav_format)  
      display(Audio(res_path, autoplay=True)) # display audio file  
    pass  
  
  def clean(self):  
     input_filepaths = [f for f in glob.glob('/content/**/*.*', recursive=True)  
     if f not in existing_files and   
     any(f.endswith(ex) for ex in ['.wav','.flac','.mp3','.ogg','.opus'])]  
     for f in input_filepaths:  
       os.remove(f)  
  
inference_gui = InferenceGui()

此时系统会自动在根目录,也就是content下寻找音乐文件,包含但不限于wav、flac、mp3等等,随后根据下载的模型进行推理,推理之前会自动对文件进行背景音分离以及降噪和切片等操作。

推理结束之后,会自动播放转换后的歌曲。

结语

如果是刚开始使用Colab,默认分配的显存是15G左右,完全可以胜任大多数训练和推理任务,但是如果经常用它挂机运算,能分配到的显卡配置就会渐进式地降低,如果需要长时间并且相对稳定的GPU资源,还是需要付费订阅Colab pro服务,另外Google云盘的免费使用空间也是15G,如果模型下多了,导致云盘空间不足,运行代码也会报错,所以最好定期清理Google云盘,以此保证深度学习任务的正常运行。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
13天前
|
人工智能 监控 安全
云端问道18期实践教学-AI 浪潮下的数据安全管理实践
本文主要介绍AI浪潮下的数据安全管理实践,主要分为背景介绍、Access Point、Bucket三个部分
51 16
|
1天前
|
人工智能 搜索推荐 Serverless
云端问道22期——AI智能语音实时互动
《云端问道22期——AI智能语音实时互动》分享了构建用户与AI智能语音实时互动的方法,涵盖七个部分:进入解决方案页、方案介绍、操作步骤、创建AI智能体、实时工作模版、部署应用及应用体验。通过阿里云平台,用户可以快速部署并体验AI语音通话功能,包括语音转文字、文字转语音、个性化定制智能体人设及接入私有知识库等。整个过程简单流畅,适合开发者和企业快速上手。
|
1天前
|
人工智能 自然语言处理 搜索推荐
云端问道12期实操教学-构建基于Elasticsearch的企业级AI搜索应用
本文介绍了构建基于Elasticsearch的企业级AI搜索应用,涵盖了从传统关键词匹配到对话式问答的搜索形态演变。阿里云的AI搜索产品依托自研和开源(如Elasticsearch)引擎,提供高性能检索服务,支持千亿级数据毫秒响应。文章重点描述了AI搜索的三个核心关键点:精准结果、语义理解、高性能引擎,并展示了架构升级和典型应用场景,包括智能问答、电商导购、多模态图书及商品搜索等。通过实验部分,详细演示了如何使用阿里云ES搭建AI语义搜索Demo,涵盖模型创建、Pipeline配置、数据写入与检索测试等步骤,同时介绍了相关的计费模式。
|
1天前
|
存储 人工智能 弹性计算
云端问道6期方案教学-创意加速器:AI 绘画创作
本文整理自绍懿老师在云端问道第6期关于“创意加速器:AI绘画创作”的分享,主要介绍阿里云通义万相大模型的应用。内容涵盖七大部分:有趣的应用场景、通义万相简介、使用方法、优势特点、典型案例(如电商和营销场景)、收费标准及实操部署。通过这些内容,用户可以快速了解如何利用通义万相实现文字生成图片、图像编辑等功能,并应用于实际业务中,提升效率与创造力。
|
1天前
|
人工智能 运维 Serverless
云端问道8期方案教学-基于Serverless计算快速构建AI应用开发
本文介绍了基于Serverless计算快速构建AI应用开发的技术和实践。内容涵盖四个方面:1) Serverless技术价值,包括其发展趋势和优势;2) Serverless函数计算与AI的结合,探讨AIGC应用场景及企业面临的挑战;3) Serverless函数计算AIGC应用方案,提供一键部署、模型托管等功能;4) 业务初期如何低门槛使用,介绍新用户免费额度和优惠活动。通过这些内容,帮助企业和开发者更高效地利用Serverless架构进行AI应用开发。
|
13天前
|
人工智能 弹性计算 自然语言处理
云端问道 6 期实践教学-创意加速器:AI 绘画创作
本文介绍了在阿里云平台上一键部署Demo应用的步骤。部署完成后,通过公网地址体验Demo应用,包括文本生成图像等功能。
31 10
|
8天前
|
人工智能 前端开发 算法
科技云报到:从大模型到云端,“AI+云计算”还能讲出什么新故事
科技云报到:从大模型到云端,“AI+云计算”还能讲出什么新故事
|
1天前
|
存储 人工智能 OLAP
云端问道10期方案教学-百炼融合AnalyticDB,10分钟创建网站AI助手
本次分享由阿里云产品经理陈茏久介绍,主题为“百炼融合 AnalyticDB,10 分钟创建网站 AI 助手”。内容涵盖五个部分:大模型带来的行业变革、向量数据库驱动的 RAG 服务化探索、方案及优势与典型场景应用案例、产品选型配置介绍以及最新发布。重点探讨了大模型在各行业的应用,AnalyticDB 的独特优势及其在构建企业级知识库和增强检索服务中的作用。通过结合通义千问等产品,展示了如何在短时间内创建一个高效的网站 AI 助手,帮助企业快速实现智能化转型。
|
1天前
|
存储 人工智能 数据管理
云端问道17期方案教学-AI场景下的对象存储OSS数据管理实践
本文介绍了AI场景下的对象存储OSS数据管理实践,由阿里云技术专家明锦分享。主要内容分为两部分:1) AI场景下对象存储实践方案,包括对象存储的应用、优势及在模型推理中的优化;2) OSS常用工具介绍,如OSSFS、Python SDK、Go SDK等,并详细说明了这些工具的特点和使用场景。文中还探讨了不同模式下的性能优化,以及即将推出的OS Connector for AI/ML工具,旨在提升数据下载速度和IO性能。
|
1天前
|
人工智能 算法 搜索推荐
云端问道11期方案教学-创建专属AI助手-阿里云百炼产品能力分享
阿里云百炼产品能力分享旨在帮助用户深入了解百炼的核心功能,并快速将大模型与系统结合。主要内容包括:1. 百炼的产品定位和能力简介,涵盖模型推理、应用搭建等;2. 知识检索RAG智能体的应用能力和优势,介绍其高效构建知识库的步骤及常见问题;3. 最佳落地案例实践,如宠物行业AI助手和产业分析类互联网企业的Copilot机器人。通过这些内容,用户可以全面掌握百炼在实际业务中的应用方法和效果。

热门文章

最新文章