【Python】fastapi框架之Web部署机器学习模型

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 【Python】fastapi框架之Web部署机器学习模型

fastapi框架之Web部署机器学习模型


随着机器学习的广泛应用,如何高效的把训练好的机器学习的模型部署在Web端。


效果展示


fastapi之Web部署机器学习模型


安装第三方库


pip install fastapi -i https://pypi.tuna.tsinghua.edu.cn/simple some-package
pip install sklearn -i https://pypi.tuna.tsinghua.edu.cn/simple some-package
pip install jinja2 -i https://pypi.tuna.tsinghua.edu.cn/simple some-package
pip install uvicorn -i https://pypi.tuna.tsinghua.edu.cn/simple some-package
pip install python-multipart -i https://pypi.tuna.tsinghua.edu.cn/simple some-package
pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple some-package


训练模型


做了个小例子。用numpy随机生成训练集,使用线性回归进行训练,使用pickle库保存model模型。如下图所示

1684134263094.jpg

makeModel.py

import pickle
import numpy as np
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
#创建数据
x=np.linspace(0,1,100).reshape(-1,1)
y=[i*np.random.uniform(0.5,0.7) for i in np.linspace(0,1,100)]
y=np.array(y)
model=LinearRegression()
model.fit(x,y)
y_pred=model.predict(x)
plt.plot(x,y)
plt.plot(x,y_pred)
plt.show()
with open('model.pickle', 'wb') as file:
    pickle.dump(model, file)

1684134290542.jpg


app.py

from fastapi import FastAPI,Form,Request
import uvicorn
from fastapi.templating import Jinja2Templates
import pickle
import numpy as np
app = FastAPI()
templates = Jinja2Templates(directory="templates")
@app.get('/')
def index(request: Request):
    return templates.TemplateResponse("index.html",{"request": request,'y':''})
@app.post('/')
def yPred(request: Request,argument=Form(...)):
    argument = argument
    lis = [[argument]]
    lis = np.array(lis).reshape(-1, 1)
    with open('model.pickle', 'rb') as f:
        model=pickle.load(f)
        y_pred=model.predict(lis)
    return templates.TemplateResponse("index.html",{"request": request,'y':{'x':argument,'y_pred':y_pred[0]}})
if __name__ == '__main__':
    uvicorn.run('app:app', port=8000)


index.html

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Title</title>
</head>
<body>
    <form action="/" method="post">
        <input name="argument">
        <button>提交</button>
        {{y}}
    </form>
</body>
</html>

项目完整代码请点击我的云盘

提取码:6a1k

如有任何问题,欢迎在下方留言,谢谢!

相关文章
|
13天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
105 70
|
20天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品库存管理的深度学习模型
使用Python实现智能食品库存管理的深度学习模型
127 63
|
21天前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
41 3
|
21天前
|
机器学习/深度学习 算法 数据挖掘
线性回归模型的原理、实现及应用,特别是在 Python 中的实践
本文深入探讨了线性回归模型的原理、实现及应用,特别是在 Python 中的实践。线性回归假设因变量与自变量间存在线性关系,通过建立线性方程预测未知数据。文章介绍了模型的基本原理、实现步骤、Python 常用库(如 Scikit-learn 和 Statsmodels)、参数解释、优缺点及扩展应用,强调了其在数据分析中的重要性和局限性。
44 3
|
2天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
104 73
|
15天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
117 68
|
11天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
84 36
|
5天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
41 21
|
7天前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品消费偏好预测的深度学习模型
使用Python实现智能食品消费偏好预测的深度学习模型
42 23
|
8天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费习惯预测的深度学习模型
使用Python实现智能食品消费习惯预测的深度学习模型
44 19

热门文章

最新文章

相关产品

  • 人工智能平台 PAI