对抗图像变换攻击,腾讯OVB-AI技术中心获NeurIPS2021图像相似度挑战赛季军

简介: 对抗图像变换攻击,腾讯OVB-AI技术中心获NeurIPS2021图像相似度挑战赛季军
近日,在 AI 顶会 NeurIPS 2021 的图像相似度挑战赛中(Image Similarity Challenge),来 自腾讯在线视频 BU-AI 技术中心的团队,在 Matching Track 赛道战胜来自全球 1000 多支队伍,荣获季军。


相似图像检索,该比赛中主要指图像的拷贝检测,是计算机视觉领域的一项经典任务。其目的是判断查询图像(query),是否由库存(reference)中的任何图像编辑或攻击变换而来。该技术目前已广泛应用于互联网服务中,它作为社交媒体以及内容平台上的一个重要组成部分,主要用于低质内容识别、重复内容识别、版权保护等一系列内容审查领域,从而有助于互联网平台提供更加安全和可信的内容。

近年来,随着社交媒体以及内容平台的发展,图像拷贝检测面临了新的挑战点:大规模检索与复杂的攻击。以 Facebook 网站为例,每天将产生数十亿张新图片,如何快速的在较大库存检测这些新图片成为一个挑战。另外,查询图像在现实中会受到多种攻击变换,如滤镜、遮挡、裁剪、模糊、手绘等等。导致检测工作仅靠人工无法完成,需要算法来帮助进行自动的标记,因此大规模检索变得越来越重要和实用。

图像变换攻击示例

为了进一步促进图像拷贝检测技术的研究,Facebook AI 在顶会 NeurIPS 2021 上举办了图像相似度挑战赛(Image Similarity Challenge),比赛共分为 Matching Track 和 Descriptor Track 两个赛道。同时,比赛提供了一个具有挑战性的数据集,该数据集来自于真实的社交媒体平台,主要由一百万库存图片、五万查询图片,以及一百万训练集组成,它可以作为大规模图像相似性检测的新基准。本次比赛吸引了来自腾讯、百度、阿里、旷世、三星、Intel、DeNA 等国内外知名公司及研究机构,共 1000 多支队伍参加。



腾讯 imgFp 团队获得季军

在本次 NeurIPS 2021 图像相似度挑战赛中,来自腾讯的 imgFp 团队针对上述挑战点,设计了一种结合全局特征与局部特征双路召回的高效检测算法,该算法能够以较高的鲁棒性来应对绝大多数的变换攻击,并且实用性强,单图全流程检索耗时约 2-3 秒,最终获得 Matching Track 赛道季军。

最终榜单:https://www.drivendata.org/competitions/84/competition-image-similarity-1-final/leaderboard/

1、鲁棒的单一模型

imgFp 团队采用以 Swin-Transformer 为主干网络的模型来提取查询图像的全局特征,并基于 EsViT 的方法,设计了一种多阶段的自监督训练方式,以充分发挥网络的自注意力机制。


为了提高模型的抗攻击能力,imgFp 团队在训练过程中设计了超过 40 种数据增强方式来生成正样本对,充分模拟各种图像攻击变换,并在训练过程中使用 memory bank 来达到扩充 batch size 的效果,充分挖掘难分负样本。


最终,imgFp 团队训练得到一个鲁棒的单一网络模型,来对每张查询图像计算生成一个 256 维的特征向量。全局特征检索结果可视化如图所示,对于很多极端的攻击干扰依然可以获得较好的检索排序结果。


2、双路召回,应对极端样本

imgFp 团队发现,全局特征仍然较难表征某些极端的攻击变换,例如,较大范围的裁剪或者作为很小的区域叠加在背景图像上等,如图所示。这导致了仅靠全局特征的召回率偏低。


然而,这些极端样本在局部上具有较强的一致性,因此 imgFp 团队提出了结合局部特征做双路召回的方案,并使用 GPU Faiss 来加速大规模局部特征的搜索,最后采用 KNN-matching 的方法对两路召回的结果进行融合并计算相似分数。

方法的整体 pipeline 如图所示,imgFp 团队发现,这种结合全局特征与局部特征的双路召回方式,能够发挥两种特征的互补优势,从而实现应对大多数攻击变换的作用。


详细方法见论文:https://arxiv.org/abs/2112.02373

团队简介

imgFp 团队的参赛成员均来自于腾讯在线视频 BU 的 AI 技术中心。该团队作为腾讯 PCG 视频关系中台的主要建设者,自 2014 年开始,便积极探索视频间关系的建立与应用,并积累了丰厚的技术和经验。团队所研发的视频排重、图文排重、短带长等技术,已应用于公司内多项产品和业务,包括腾讯视频、腾讯微视、腾讯新闻、腾讯看点,以及微信视频号。

据团队成员介绍,本次比赛,是团队在业务之余的一次探索,初衷是想验证其算法在高难度数据集上的表现。相较于第一和第二名的方法,他们的方法虽然精度略低,但却更加适用于线上生产环境。目前,图像拷贝检测技术已经在互联网服务中发挥了重要价值,但仍面临着大规模检索和复杂攻击的挑战,团队将继续钻研和打磨技术,不断助力内容生态,积极创造更多社会价值。

相关文章
|
8天前
|
人工智能 小程序 Java
电子班牌管理系统源代码,基于AI人脸识别技术的智能电子班牌云平台解决方案
电子班牌管理系统源码,基于AI人脸识别的智慧校园云平台,支持SaaS架构,涵盖管理端、小程序与安卓班牌端。集成考勤、课表、通知、门禁等功能,提供多模式展示与教务联动,助力校园智能化管理。
61 0
|
1月前
|
人工智能 JSON 前端开发
Agentic AI崛起:九大核心技术定义未来人机交互模式​
本文系统梳理AI智能体架构设计的九大核心技术,涵盖智能体基础、多智能体协作、知识增强、模型优化、工具调用、协议标准化及人机交互等关键领域,助力构建高效、智能、协同的AI应用体系。建议点赞收藏,持续关注AI架构前沿技术。
480 1
|
1月前
|
存储 机器学习/深度学习 人工智能
​​解锁AI检索的7大Embedding技术:从稀疏到多向量,一文掌握!​
本文系统解析七种主流文本嵌入技术,包括 Sparse、Dense、Quantized、Binary、Matryoshka 和 Multi-Vector 方法,结合适用场景提供实用选型建议,助你高效构建文本检索系统。
163 0
|
15天前
|
人工智能 缓存 自然语言处理
Java与多模态AI:构建支持文本、图像和音频的智能应用
随着大模型从单一文本处理向多模态能力演进,现代AI应用需要同时处理文本、图像、音频等多种信息形式。本文深入探讨如何在Java生态中构建支持多模态AI能力的智能应用。我们将完整展示集成视觉模型、语音模型和语言模型的实践方案,涵盖从文件预处理、多模态推理到结果融合的全流程,为Java开发者打开通往下一代多模态AI应用的大门。
172 41
|
12天前
|
人工智能 自然语言处理 安全
AI助教系统:基于大模型与智能体架构的新一代教育技术引擎
AI助教系统融合大语言模型、教育知识图谱、多模态交互与智能体架构,实现精准学情诊断、个性化辅导与主动教学。支持图文语音输入,本地化部署保障隐私,重构“教、学、评、辅”全链路,推动因材施教落地,助力教育数字化转型。(238字)
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
用AI守护迷途少年:戒毒所青少年心理疏导系统的技术实践
在戒毒所中,青少年心理更脆弱却难言苦痛。我们打造AI心理疏导系统,以多模态情绪识别、个性化疏导引擎与隐私优先架构,用技术补位心理支持,主动发现风险,精准干预,守护迷途少年重拾希望。(239字)
|
20天前
|
机器学习/深度学习 人工智能 数据安全/隐私保护
阿里云 Qwen3 全栈 AI 模型:技术解析、开发者实操指南与 100 万企业落地案例
阿里云发布Qwen3全栈AI体系,推出Qwen3-Max、Qwen3-Next等七大模型,性能全球领先,开源生态超6亿次下载。支持百万级上下文、多模态理解,训练成本降90%,助力企业高效落地AI。覆盖制造、金融、创作等场景,提供无代码与代码级开发工具,共建超级AI云生态。
352 6
|
1月前
|
人工智能 安全 数据库
AI编程:普通人难以逾越的技术高墙-优雅草卓伊凡
AI编程:普通人难以逾越的技术高墙-优雅草卓伊凡
152 15
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC技术深度解析:生成式AI的革命性突破与产业应用实战
蒋星熠Jaxonic,AI技术探索者,深耕生成式AI领域。本文系统解析AIGC核心技术,涵盖Transformer架构、主流模型对比与实战应用,分享文本生成、图像创作等场景的实践经验,展望技术趋势与产业前景,助力开发者构建完整认知体系,共赴AI原生时代。
|
1月前
|
机器学习/深度学习 人工智能 资源调度
嵌入式AI领域关键技术的理论基础
本内容系统讲解嵌入式AI领域关键技术的数学理论基础,涵盖神经网络量化、剪枝、知识蒸馏与架构搜索的核心原理。深入探讨量化中的信息论与优化方法、稀疏网络的数学建模、蒸馏中的信息传递机制,以及神经架构搜索的优化框架,为在资源受限环境下实现高效AI推理提供理论支撑。
79 5

热门文章

最新文章