整合全球新冠数据,华中大等开源联邦学习医学AI计算框架|Nature子刊

简介: 整合全球新冠数据,华中大等开源联邦学习医学AI计算框架|Nature子刊
12 月 15 日,Nature 子刊《自然 - 机器智能》发表了由华中科技大学人工智能学院发起、剑桥大学、斯坦福大学、约翰霍普金斯大学、MD 安德森肿瘤医院、华中科技大学同济医学院附属同济医院、附属协和医院、国家药物筛选中心等国内外权威科研机构联合开发的联邦学习开源医学人工智能(AI)计算框架(Unified CT AI Diagnostic Initiative , UCADI)。


人工智能技术正在变革传统医疗。但当前人工智能模型普遍泛化性差:模型在训练过的数据集上表现优异,但是对于未曾见过的数据,表现差别大。这个根本性的缺陷导致 AI 技术在医学、医疗应用中表现出的局限性,甚至安全问题更加突出。由于医疗数据受到个人隐私,知识产权,数据尺寸等多方面的限制,无法实现大范围、集中式的数据融合,当前医学人工智能模型通常只能在有限,甚至单一的数据集上训练。因此在这样条件下构建的医疗 AI 模型应用范围十分有限。

为了解决这个根本性问题,华中科技大学人工智能学院夏天教授与白翔教授团队提出基于联邦学习(Federated learning)开源医学人工智能计算框架(UCADI),并发表在了《自然 - 机器智能》上


论文地址:https://www.nature.com/articles/s42256-021-00421-z

此架构在保证数据安全与隐私前提下,无需传输数据,能在不同物理地点共享训练医学数据,构建泛化性强的医学 AI 模型。

不仅如此,基于 UCADI,夏天教授与白翔教授联合华中科技大学同济医学院附属同济医院、附属协和医院、武汉天佑医院、武汉中心医院、武汉儿童医院、国家药物筛选中心与英国剑桥大学医学中心(维护全欧盟新冠影像数据,包括全英 23 家医院)发起国际大合作,实现真正全球分布式共享新冠影像数据 AI 模型训练与构建。

UCADI 结构概览。

基于中英 23 家医院近万张的胸部 CT 扫描数据,研究团队验证了 UCADI 能够在保证用户数据隐私的情况下,多快好省地进行人工智能辅助诊断模型的训练和推理,实现跨国多中心的新冠病毒智能诊断。基于 UCADI 训练的 AI 新冠诊断模型相对于单个医院数据训练出的模型,不仅对新冠辅助诊断性能远超,同时在多个不同医院的验证数据集上表现出良好的泛化性与鲁棒性。

团队还进一步分析了模型的可解释性和不确定性,并验证了训练的 AI 模型能够捕捉到类似磨玻璃样阴影、小叶间隔增厚等新冠病人独有的 CT 特征。在此基础上,团队成员研究了数据异质性对模型性能的影响。

剑桥大学博士生、文章的共同一作王瀚宸发现“除了不同的医生、医院在 CT 的采集步骤上有所不同,国家与国家之间的差异更大。中英两国的 CT 数据有一个很大的区别是,中国的数据都是平扫,而英国的 CT 有很大一部分是注入造影剂后进行的增强扫描。此外,两国病人在年龄等属性上的分布也很不同,英国患者中的老年人比例非常高。这种数据上的异质性,对模型的训练是个很大的挑战。


为了应对这种数据异质性,团队首先进行了很多模型上的筛选和尝试,在几种常见的 3D 卷积网络架构中,最后选择 3D DenseNet。不仅是因为其较好的泛化性能,同时模型尺寸偏小,非常方便联邦学习中进行传输。但值得注意的是,3D DenseNet 也需要更多的计算资源。在此基础上,团队还尝试用 CycleGAN 在增强和平扫的 CT 间进行转换,取得了一些性能上的改善,但还是有相当的可提升空间。


此工作中,UCADI 框架初步展示了对于全球新冠数据的整合能力,基于全球范围数据构建的新冠诊断预测模型完全向全球开放使用,各国医疗机构可以在此基础上,利用 UCADI 进一步共享、更新、演进、优化预测模型。同时,UCADI 框架完全开源,可用于其他类型医疗数据,为未来的跨国智能诊断系统的研究与发展提供了基础设施。

团队已与剑桥大学和世界卫生组织 10 月份在德国新设立的疫情智能防控中心 (WHO Hub for Pandemic and Epidemic Intelligence) 建立进一步合作,重点研究现有的 AI 诊疗模型对识别新变种 Omicron 的鲁棒性,以及探索用持续学习 (Continual Learning) 等方法来开发一个可不断进化的联邦学习诊疗框架。

相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
整合海量公共数据,谷歌开源AI统计学专家DataGemma
【10月更文挑战第28天】谷歌近期开源了DataGemma,一款AI统计学专家工具,旨在帮助用户轻松整合和利用海量公共数据。DataGemma不仅提供便捷的数据访问和处理功能,还具备强大的数据分析能力,支持描述性统计、回归分析和聚类分析等。其开源性质和广泛的数据来源使其成为AI研究和应用的重要工具,有助于加速研究进展和推动数据共享。
27 6
|
22天前
|
机器学习/深度学习 人工智能
打开AI黑匣子,三段式AI用于化学研究,优化分子同时产生新化学知识,登Nature
【10月更文挑战第11天】《自然》杂志发表了一项突破性的化学研究,介绍了一种名为“Closed-loop transfer”的AI技术。该技术通过数据生成、模型训练和实验验证三个阶段,不仅优化了分子结构,提高了光稳定性等性质,还发现了新的化学现象,为化学研究提供了新思路。此技术的应用加速了新材料的开发,展示了AI在解决复杂科学问题上的巨大潜力。
22 1
|
4天前
|
存储 人工智能 SEO
全开源免费AI网址导航网站源码
Aigotools 可以帮助用户快速创建和管理导航站点,内置站点管理和自动收录功能,同时提供国际化、SEO、多种图片存储方案。让用户可以快速部署上线自己的导航站。
10 1
|
18天前
|
人工智能 安全 决策智能
OpenAI推出实验性“Swarm”框架,引发关于AI驱动自动化的争论
OpenAI推出实验性“Swarm”框架,引发关于AI驱动自动化的争论
|
12天前
|
人工智能 API 决策智能
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
84 6
|
20天前
|
人工智能 开发框架 Java
总计 30 万奖金,Spring AI Alibaba 应用框架挑战赛开赛
Spring AI Alibaba 应用框架挑战赛邀请广大开发者参与开源项目的共建,助力项目快速发展,掌握 AI 应用开发模式。大赛分为《支持 Spring AI Alibaba 应用可视化调试与追踪本地工具》和《基于 Flow 的 AI 编排机制设计与实现》两个赛道,总计 30 万奖金。
|
21天前
|
人工智能 Java API
阿里云开源 AI 应用开发框架:Spring AI Alibaba
近期,阿里云重磅发布了首款面向 Java 开发者的开源 AI 应用开发框架:Spring AI Alibaba(项目 Github 仓库地址:alibaba/spring-ai-alibaba),Spring AI Alibaba 项目基于 Spring AI 构建,是阿里云通义系列模型及服务在 Java AI 应用开发领域的最佳实践,提供高层次的 AI API 抽象与云原生基础设施集成方案,帮助开发者快速构建 AI 应用。本文将详细介绍 Spring AI Alibaba 的核心特性,并通过「智能机票助手」的示例直观的展示 Spring AI Alibaba 开发 AI 应用的便利性。示例源
|
机器学习/深度学习 人工智能 算法
阿里云异构计算产品家族亮相 覆盖全场景AI和高性能计算需求
本文讲的是阿里云异构计算产品家族亮相 覆盖全场景AI和高性能计算需求【IT168 云计算】计算正推动着人工智能产业更大规模的爆发。
2100 2
|
机器学习/深度学习 人工智能 算法
阿里云异构计算产品家族亮相 覆盖全场景AI和高性能计算需求
本文讲的是阿里云异构计算产品家族亮相 覆盖全场景AI和高性能计算需求,计算正推动着人工智能产业更大规模的爆发。9月12日,阿里云宣布推出全新一代异构加速平台,为人工智能产业提供多场景化的全球加速能力。这是阿里云异构计算家族首次亮相,涵盖GPU、FPGA在内等6款异构实例,可满足从图形渲染到高性能计算及人工智能等复杂应用的计算需求。
2265 0