【Pytorch神经网络理论篇】 26 基于空间域的图卷积GCNs(ConvGNNs):定点域+谱域+图卷积的操作步骤

简介: 图卷积网络(Graph Convolutional Network,GCN)是一种能对图数据进行深度学习的方法。图卷积中的“图”是指数学(图论)中用顶点和边建立的有相关联系的拓扑图,而积指的是“离散卷积”,其本质就是一种加权求和,加权系数就是卷积核的权重系数。

同学你好!本文章于2021年末编写,获得广泛的好评!


故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现


Pytorch深度学习·理论篇(2023版)目录地址为:


CSDN独家 | 全网首发 | Pytorch深度学习·理论篇(2023版)目录


本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理进行讲解与分析,通过将深度学习知识与Pytorch的高效结合,帮助各位新入门的读者理解深度学习各个模板之间的关系,这些均是在Pytorch上实现的,可以有效的结合当前各位研究生的研究方向,设计人工智能的各个领域,是经过一年时间打磨的精品专栏!

https://v9999.blog.csdn.net/article/details/127587345


欢迎大家订阅(2023版)理论篇

以下为2021版原文~~~~

815902569f6a467a99304f9ac1482386.png


图卷积网络(Graph Convolutional Network,GCN)是一种能对图数据进行深度学习的方法。图卷积中的“图”是指数学(图论)中用顶点和边建立的有相关联系的拓扑图,而积指的是“离散卷积”,其本质就是一种加权求和,加权系数就是卷积核的权重系数。


51f0a871be024c24ad287676a0640a77.png


图结构数据是具有无限维的一种不规则数据,每一个顶点周围的结构可能都是独一无二的,没有平移不变性使得传统的CNN、PNN无法在上面工作。

1 GCN

如果说CNN是图像的特征提取器,那么GCN便是图数据的特征提取器。


CNN可以直接对矩阵数据进行操作,而GCN操作方式有两种:谱域和顶点域。


1.1 基于谱域的图处理


谱域是谱图论中的术语。谱图论源于天文学,在天体观测中,可通过观察光谱的方式来观察距离遥远的天体。同样,图谱也是描述图的重要工具。


谱图论研究如何通过几个容易计算的定量来描述图的性质。通常的方法是将图结构数据编码成一个矩阵,然后计算矩阵的特征值。这个特征值也称为图的谱。被编码后的矩阵可以理解成图的谱域。


谱是方阵特有的性质,对于任意非欧氏空间数据,必须先通过计算其定量的描述生成方阵,才可以进一步求得谱。


GCN使用图结构中的度矩阵和邻接矩阵来表示图的谱域,这就是基于谱域实现。


GCN对矩阵的拉普拉斯变换,则是对图结构提取特征(谱)的一种方法。


1.2 基于定点域/空间域的图处理


指由图的本身结构所形成的空间,直接按照图的结构,根据相邻顶点间的关系以及每个顶点自己的属性,逐个顶点地进行计算。


1.3 基于顶点域的图卷积


基于顶点域的图卷积处理会比谱域的方式更加直观,也容易理解。


1.3.1 图卷积公式


bcdffc84412642b1a6ce2bfa5f242fb3.png

584eb55b790f46b39d33d086cb5124e8.png


1.3.2 图卷积的操作步骤(从顶点的角度)


图卷积的操作就是在整个图上对每个顶点都按照上式(10-1)的描述执行一遍。从顶点的角度来看,主要可以分成以下3个步骤:


c54251fab6fe4f8da7677f64bef5bf94.png


1、发射(send):每一个顶点将自身的特征信息经过变换后发送给邻居顶点。这一步是对顶点的特征信息进行抽取变换,如图10-2所示。


88bdc57caff040fa99b8283cf41284a0.png


2、接收(receive):每个顶点将邻居顶点的特征信息聚合。这一步是对顶点的局部结构信息进行融合,如图10-3所示。


74bfba601f334321a6416d219bb17abb.png


3、变换(transform):将前面的信息聚合之后进行非线性变换,增加模型的表达能力,如图10-4所示。


420b62c6339448c7a55bd2acab14eee5.png


使用GCN从图数据中提取的特征可以用于对图数据执行多种任务,如顶点分类、图分类(graph classification)和边预测(Iinkprediction),还可以顺便得到图的垂入表示。


1.3.4 图卷积的特性


1.局部参数共享:算子是适用于每个顶点(圆圈代表算子)的,处处共享。


2.感受域与层数成正比:最开始的时候,每个顶点包含直接邻居的信息,在计算第二层时,就能把邻居顶点的信息包含进来,这样参与运算的信息就更多、更充分。层数受域就更广,参与运算的信息就更多(特征一层层地抽取,每多一层就会更抽象、更高级)。

目录
相关文章
|
21天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
221 55
|
2天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
20 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
160 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
18天前
|
机器学习/深度学习 算法 PyTorch
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本文详细介绍了如何在昇腾平台上使用PyTorch实现GraphSage算法,在CiteSeer数据集上进行图神经网络的分类训练。内容涵盖GraphSage的创新点、算法原理、网络架构及实战代码分析,通过采样和聚合方法高效处理大规模图数据。实验结果显示,模型在CiteSeer数据集上的分类准确率达到66.5%。
|
1月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
88 3
图卷积网络入门:数学基础与架构设计
|
30天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
1月前
|
域名解析 运维 网络协议
网络诊断指南:网络故障排查步骤与技巧
网络诊断指南:网络故障排查步骤与技巧
203 7
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
312 7
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
60 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新