图如何双曲建模?弗吉尼亚理工Amazon最新WWW2022「双曲神经网络:理论、架构和应用」教程

简介: 图如何双曲建模?弗吉尼亚理工Amazon最新WWW2022「双曲神经网络:理论、架构和应用」教程

【新智元导读】TheWebConf即将召开,来自弗吉亚理工和亚马逊等学者的《双曲神经网络》教程,值得关注!


TheWebConf是中国计算机学会(CCF)推荐的A类国际学术会议,由国际万维网会议委员会(IW3C2)和主办地地方团队合作组织,每年召开一次,今年是第31届会议,本年度论文录用率为17.7%,



图是普遍存在的数据结构,广泛应用于许多数据存储场景,包括社交网络、推荐系统、知识图谱和电子商务。这导致了GNN架构的兴起,用于分析和编码来自图的信息,以便在下游任务中获得更好的性能。


虽然图分析领域的初步研究是由神经结构驱动的,但最近的研究已经揭示了图数据集特有的重要属性,如层次结构和全局结构。这推动了对双曲空间的研究,因为它们能够有效地编码图数据集中存在的固有层次。


随后,该研究也被应用到其他领域,如自然语言处理和计算机视觉,取得了令人惊叹的结果。然而,进一步发展的主要挑战是双曲网络的晦涩,以及更好地理解必要的代数操作,以扩大应用到不同的神经网络结构。


在本教程中,我们的目标是向网络领域的研究人员和实践者介绍欧几里得运算的双曲等变,这是处理它们在神经网络架构中的应用所必需的。


此外,我们描述了GNN架构的流行双曲线变体,如递归网络、卷积网络和注意力网络,并解释了它们的实现,而不是欧几里得网络。


此外,我们还通过图分析、知识图谱推理、产品搜索、NLP和计算机视觉等领域的现有应用来激发我们的教程,并将性能提高与欧几里得的同类方法进行比较。


演讲内容



专知

,赞10


目录


结构


讲者介绍



Nurendra Choudhary是弗吉尼亚理工大学计算机科学系的博士生,在导师Chandan Reddy博士的指导下,他的研究重点是图分析和产品搜索领域的表示学习。


他在WWW、NeurIPS、WSDM和COLING等顶级会议上发表相关论文。他获得了国际信息技术学院计算语言学硕士学位,期间他获得了2018年CICLING的最佳论文奖。



Nikhil Rao是亚马逊的一名高级科学家,他在那里从事大规模图建模和算法的研究,以改进亚马逊搜索。在加入亚马逊之前,他是帕洛阿尔托Technicolor AI Labs的研究员。


Nikhil的研究兴趣和专长包括大规模优化、数据建模和挖掘,以及开发利用数据结构的算法。Nikhil在顶级会议和期刊上发表了几篇论文。他获得了来自UT Austin的ICES博士后奖学金和IEEE最佳学生论文奖。他拥有UW Madison的电气和计算机工程博士学位。



Karthik Subbian是亚马逊的首席科学家,拥有超过17年的行业经验。他领导着一个由科学家和工程师组成的团队来提高搜索质量和信任度。


在亚马逊,他领导了一个由科学家和工程师组成的团队,利用社交网络结构及其交互来探索信息传播和用户建模问题。此前,他在IBM T.J. Watson研究中心的商业分析和数学科学部门工作,是Facebook的一名研究科学家和负责人。


他的专业领域包括机器学习、信息检索和大规模网络分析。更具体地说,网络中的半监督和监督学习、个性化和推荐、信息扩散和表示学习。他拥有印度科学研究所(IISc)的硕士学位和明尼苏达大学的博士学位,都是计算机科学专业。


Karthik获得了许多著名奖项,包括IBM博士奖学金、2013年SIAM数据挖掘(SDM)会议的最佳论文奖和2013年INFORMS Edelman桂冠奖。


教程节选



参考资料:

[1]Code Library: GraphZoo: Facilitating learning, using, and designing graph processing pipelines/models systematically.

[2]Choudhary, N., Rao, N., Katariya, S., Subbian, K., & Reddy, C. K. (2022, February). ANTHEM: Attentive Hyperbolic Entity Model for Product Search. In Proceedings of the International Conference on Web Search and Data Mining 2022. (pdf)

[3]Choudhary, N., Rao, N., Katariya, S., Subbian, K., & Reddy, C. (2021). Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs. Advances in Neural Information Processing Systems, 34. (pdf)

[4]Choudhary, N., Rao, N., Katariya, S., Subbian, K., & Reddy, C. K. (2021, April). Self-Supervised Hyperboloid Representations from Logical Queries over Knowledge Graphs. In Proceedings of the Web Conference 2021 (pp. 1373-1384). (pdf)

[5]Chami, I., Ying, Z., Ré, C., & Leskovec, J. (2019). Hyperbolic graph convolutional neural networks. Advances in neural information processing systems, 32, 4868-4879. (pdf) Ganea, O. E., Bécigneul, G., & Hofmann, T. (2018). Hyperbolic neural networks. Advances in neural information processing systems, 5345-5355. (pdf) Shimizu, R., Mukuta, Y., & Harada, T. (2021). Hyperbolic neural networks++. Interna

相关文章
|
10天前
|
人工智能 运维 物联网
AI在蜂窝网络中的应用前景
AI在蜂窝网络中的应用前景
22 3
|
17天前
|
监控 安全
公司上网监控:Mercury 在网络监控高级逻辑编程中的应用
在数字化办公环境中,公司对员工上网行为的监控至关重要。Mercury 作为一种强大的编程工具,展示了在公司上网监控领域的独特优势。本文介绍了使用 Mercury 实现网络连接监听、数据解析和日志记录的功能,帮助公司确保信息安全和工作效率。
87 51
|
2天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
16 8
|
4天前
|
XML 前端开发 Android开发
Kotlin教程笔记(80) - MVVM架构设计
Kotlin教程笔记(80) - MVVM架构设计
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
13天前
|
SQL 安全 前端开发
PHP与现代Web开发:构建高效的网络应用
【10月更文挑战第37天】在数字化时代,PHP作为一门强大的服务器端脚本语言,持续影响着Web开发的面貌。本文将深入探讨PHP在现代Web开发中的角色,包括其核心优势、面临的挑战以及如何利用PHP构建高效、安全的网络应用。通过具体代码示例和最佳实践的分享,旨在为开发者提供实用指南,帮助他们在不断变化的技术环境中保持竞争力。
|
11天前
RS-485网络中的标准端接与交流电端接应用解析
RS-485,作为一种广泛应用的差分信号传输标准,因其传输距离远、抗干扰能力强、支持多点通讯等优点,在工业自动化、智能建筑、交通运输等领域得到了广泛应用。在构建RS-485网络时,端接技术扮演着至关重要的角色,它直接影响到网络的信号完整性、稳定性和通信质量。
|
14天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
14天前
|
网络协议 数据挖掘 5G
适用于金融和交易应用的低延迟网络:技术、架构与应用
适用于金融和交易应用的低延迟网络:技术、架构与应用
43 5
|
14天前
|
运维 物联网 网络虚拟化
网络功能虚拟化(NFV):定义、原理及应用前景
网络功能虚拟化(NFV):定义、原理及应用前景
31 3
下一篇
无影云桌面