【数据结构】队列(循环队列和链队列)详细讲解各种操作

简介: 【数据结构】队列(循环队列和链队列)详细讲解各种操作

⭐队列的分类

✨循环队列

🎈优点

有效利用存储空间:因为循环队列可以重复使用已经出队的空间,所以相对于普通队列,它更能有效地利用存储空间。


提高队列操作效率:由于循环队列的队尾和队头可以相连,所以插入和删除元素的操作都可以在 O(1) 的时间内完成,使得队列操作效率提高。


方便实现算法:循环队列广泛应用于各种算法中,如 BFS(广度优先搜索)、模拟程序、操作系统等。这是因为循环队列具有较好的随机读取性能,方便实现算法。


🎈缺点

队列长度固定:循环队列的队列长度是固定的,无法动态扩容或缩小。如果队列长度过小,可能会导致入队操作失败,而队列长度过大则会浪费存储空间。


难以判断队列是否为空:由于循环队列的队头和队尾可以相连,因此当队头指针和队尾指针重合时,无法判断队列是空还是满。为了解决这个问题,通常需要在循环队列中增加一个计数器,记录队列中元素的个数。


不易实现动态删除操作:循环队列的底层存储结构通常采用数组实现,如果要删除队列中的某个元素,需要将该元素之后的所有元素依次前移,并将队尾指针重新指向前一个位置。这个操作比较繁琐,不如链式队列方便。


✨链队列

🎈优点

队列长度没有限制:链队列没有固定长度的限制,可以动态添加和删除队列中的元素,满足不同场景下的需求。


插入和删除操作方便:由于链队列是采用链式存储结构实现的,因此在插入和删除操作时,只需要改变指针的引用即可,而不必像顺序队列那样进行元素的搬移操作。


存储空间使用灵活:链队列只需要在堆上动态分配内存,因此它可以更灵活地使用存储空间,可以通过释放已经不再需要的节点来减少存储空间的浪费。


难以出现队列满的情况:链队列不会出现队列满的情况,因为它可以动态增长,只要内存允许,就可以无限添加元素。


🎈缺点

空间开销:在使用链式存储结构时,每个节点需要额外的空间来存储指向下一个节点的指针,因此链队列的空间开销相对于顺序队列要大。


难以实现随机访问:由于链队列的存储方式是链式的,因此在进行随机访问时,查找某个位置的节点需要从头节点开始依次遍历,效率比顺序队列低。


无法利用CPU缓存:链队列中每个节点的存储空间不连续,因此使用CPU缓存会出现严重缓存不命中问题,导致效率降低。


综上所述,链队列适合插入、删除操作频繁,而对于需要快速随机访问的场景则不是很适合。当然,数据结构的选择需要综合考虑业务需求和实际情况,选择最适合的数据结构。


⭐基本概念

✨队列

一种先进先出的线性表,只允许在表的一端进行插入,另一端进行删除,类似于平时日常生活的排队


✨队头

允许删除的一端是队头(别搞反了)


✨队尾

允许插入的一端的队尾(别搞反了)

image.png

⭐循环队列  详细操作

🎊定义

🎈算法步骤

1.使用一组地址连续的存储单元依次存放从队头到队尾的元素

2.定义头指针front  尾指针rear

🎈算法描述

typedef struct SqQueue
{
  int *base;
  int front;//头指针
  int rear;//尾指针  
}SqQueue;

🎆为什么要“循环”

初始化创建空队列时,令front = rear = 0 ,

每当插入新的队尾元素时,尾指针rear+1,

每当删除队头元素时,头指针front+1

因此,头指针始终指向队头元素,尾指针始终指向队尾元素的下一个位置

如图所示

image.png

假设当前队列分配的最大空间为6,那么当队列在上图(d)状态时,就不能再继续插入新的队尾元素,否则会出现溢出现象(数组非法越界),但是现在队列实际可用的空间还没有占满,那么这种现象就被叫做“假溢出”


变成“循环队列”就可以解决这个问题


循环队列里面,头,尾指针以及队列元素之间的关系不变,但是头,尾指针“按照环状+1”的操作可以通过“模”运算来实现。通过取模,头指针和尾指针就可以在顺序表空间里面以头尾衔接的方式“循环”移动


这样子


🚥队空

S.front==S.rear

🚥队满

(S.rear+1)%MAXSIZE==S.front

🎊初始化

初始化就是动态分配一个预定义大小为MAXSIZE的数组空间


🎈算法步骤

1.分配一个预定义大小为MAXSIZE的数组空间,base指向数组空间的首地址


2.将头指针和为指针置为0,表示空队列


🎈算法描述

int init(SqQueue &S)
{
  S.base=new int[maxsize];
  if(!S.base) return -1;
  S.front=S.rear=0;//空队列
  return 1;
}

🎊求队列长度

🎈算法步骤

对于非循环队列,尾指针和头指针的差值就是队列长度,但是对于循环队列,这样子算出的长度可能为负数,所以得把差值加上maxsize,然后与maxsize求余

🎈算法描述

int QueueLength(SqQueue S)
{
  return (S.rear-S.front+maxsize)%maxsize;
}

🎊入队

队尾插入一个新的元素

🎈算法步骤

1.判断队列是否满,如果满,返回-1

2.将新元素插入队尾

S.base[S.rear]=num

3.队尾指针+1

🎈算法描述

int EnQueue(SqQueue &S,int num)
{
  if((S.rear+1)%maxsize==S.front) return -1;
  S.base[S.rear]=num;
  S.rear=(S.rear+1)%maxsize;//入  队尾指针+1
  return 1;
}

🎊出队

删除队头元素

image.png

🎈算法步骤

1.判断队列是否满,如果满,返回-1

2.保存队头元素

3.队头指针+1

🎈算法描述

int DeQueue(SqQueue &S)
{
  if(S.front==S.rear) return -1;
  cout<<S.base[S.front]<<endl;
  S.front=(S.front+1)%maxsize;//出  队头指针+1
  return 1; 
}

🎊取队头元素

🎈算法步骤

当队列非空时,取出队头元素的值,队头指针不变

🎈算法描述

int GetHead(SqQueue S)
{
    if(S.front!=S.rear)    //非空
        return S.base[S.front];
}

🎊遍历队列

🎈算法步骤

1.判断队列是否空,如果空,返回-1

2.头指针+1,向下遍历队列

🎈算法描述

int Trance(SqQueue &S)
{
  if(S.front==S.rear) return -1;
  while(S.rear!=S.front)
  {
    cout<<S.base[S.front]<<" ";
    S.front=(S.front+1)%maxsize ;
  }
  return 1;
}

🍔完整代码

#include<iostream>
using namespace std;
typedef struct SqQueue
{
  int *base;
  int front;//头指针
  int rear;//尾指针  
}SqQueue;
#define maxsize 16
//1
int init(SqQueue &S)
{
  S.base=new int[maxsize];
  if(!S.base) return -1;
  S.front=S.rear=0;
  return 1;
}
//3
int EnQueue(SqQueue &S,int num)
{
  if((S.rear+1)%maxsize==S.front) return -1;
  S.base[S.rear]=num;
  S.rear=(S.rear+1)%maxsize;//入  队尾指针+1
  return 1;
}
//4
int DeQueue(SqQueue &S)
{
  if(S.front==S.rear) return -1;
  cout<<S.base[S.front]<<endl;
  S.front=(S.front+1)%maxsize;//出  队头指针+1
  return 1; 
}
//6
int Trance(SqQueue &S)
{
  if(S.front==S.rear) return -1;
  while(S.rear!=S.front)
  {
    cout<<S.base[S.front]<<" ";
    S.front=(S.front+1)%maxsize ;
  }
  return 1;
}
//7
int QueueLength(SqQueue S)
{
  return (S.rear-S.front+maxsize)%maxsize;
}
int main()
{
  SqQueue S;
  int n,m;
  cout<<"请选择:"<<endl;
  cout<<"1.初始化"<<endl;
  cout<<"2.队列是否空"<<endl;
  cout<<"3.入队"<<endl;
  cout<<"4.出队"<<endl;
  cout<<"5.判断队列是否满"<<endl;
  cout<<"6.遍历队列"<<endl;
  cout<<"7.求队列长度"<<endl;
  cout<<"0.结束"<<endl;
  for(;;)
  {
    int num;
    cin>>num;
    switch(num)
    {
      case 1:
        if(init(S)) cout<<"初始化成功"<<endl;
        else cout<<"初始化失败"<<endl;
        break;
      case 2:
        if(S.front==S.rear) cout<<"空队列"<<endl;
        else cout<<"非空队列"<<endl;
        break;
      case 3:
        cout<<"请输入需要入队的数目"<<endl;
        cin>>n;
        for(int i=0;i<n;i++)
        {
          cin>>m;
          if(EnQueue(S,m)) cout<<"入队成功"<<endl;
          else cout<<"入队失败"<<endl;
        }
        break;
      case 4:
        if(DeQueue(S)) cout<<"出队成功"<<endl;
        else cout<<"出队失败"<<endl;
        break;
      case 5:
        if(S.front==(S.rear+1)%maxsize) cout<<"队列已满"<<endl;
        else cout<<"队列未满"<<endl;
        break;
      case 6:
        if(Trance(S)) cout<<"遍历成功"<<endl;
        else cout<<"遍历失败"<<endl;
        break;
      case 7:
        cout<<"队列长度为:"<<QueueLength(S)<<endl;
      case 0:
        return 0;   
    }
  }
}

⭐链队列  详细操作

🎊定义

image.png

通常,链队列使用单链表来表示

这里为了操作方便,在队头前面加上一个头结点,并且令头指针始终指向头结点

typedef struct QNode{
  int data;
  struct QNode *next;
}QNode,*QueuePtr;
typedef struct{
  QueuePtr front;
  QueuePtr rear;
}LinkQueue;

🎊初始化

初始化就是构造一个只有头结点的空队列

🎈算法步骤

1.生成新结点作为头结点,🏳️‍🌈队头和队尾指针都指向这个结点🏳️‍🌈

2.头结点的指针域置空

🎈算法描述

int init(LinkQueue &S)
{
  S.front=S.rear=new QNode;
  S.front->next=NULL;
  return 1;
}

🎊入队

尾插法

与循环队列入队不同,链队列入队不用判断队是否满,只要为入队元素动态分配一个内存空间即可

🎈算法步骤

1.为入队元素分配一个内存空间,用指针p指向

2.将新结点的数据域置为e

3.将新结点插入到队尾

4.修改队尾指针为p

image.png

🎈算法描述

int EnQueue(LinkQueue &S,int e)
{
  QNode *P;//注意是*P 不是 P
  P=new QNode;
  P->data=e;
  P->next=NULL;
  S.rear->next=P;//插入队尾
  S.rear=P;//修改队尾指针
  return 1;
}

🎊出队

输出队头元素


出队前要判断队是否为空,出队后要释放队头元素的空间


🎈算法步骤

1.判断队列是否为空,如果为空,那么返回-1


2.临时保存队头元素的值,方便释放空间


3.修改头指针的指针域,方便指向下一个结点


4.判断出队元素是否为最后一个结点,如果是,那么就将队尾指针重新赋值,指向头结点


5.释放原队头元素的空间


🏳️‍🌈注意:S.front->next为队头,S.front不为队头🏳️‍🌈

image.png

🎈算法描述

需要判断当队列中的最后一个元素被删后,队尾指针也会丢失,因此要对队尾指针重新赋值(指向头结点)

int DeQueue(LinkQueue &S)
{
  QNode *P;
  if(S.front==S.rear) return -1;
  P=S.front->next;//p指向队头元素
  cout<<P->data<<endl;
  S.front->next=P->next;//修改头结点的指针域
  if(S.rear==P) S.rear=S.front;//如果最后一个元素被删,队尾指针指向头结点
  delete P;
  return 1;
}

🎊取队头元素

🎈算法步骤

1.判断队是否为空

2.输出队头元素

(S.front->next->data,不是S.front->data)

🎈算法描述

int GetHead(LinkQueue S)
{
    if(S.front!=S.rear)    //非空
        return S.front->next->data;
}

🎊遍历队列

🎈算法步骤

1.创建新结点P

2.新结点P指向队头S.front->next

3.从队头遍历到队尾

🎈算法描述

int Trance(LinkQueue &S)
{
  QNode *P;
  if(S.front==S.rear) return -1;
  P=S.front->next;
  while(P)
  {
    cout<<P->data<<" ";
    P=P->next;
  }
  return 1;
}

🍔完整代码

#include<iostream>
using namespace std;
#define maxsize 16
typedef struct QNode{
  int data;
  struct QNode *next;
}QNode,*QueuePtr;
typedef struct{
  QueuePtr front;
  QueuePtr rear;
}LinkQueue;
//1
int init(LinkQueue &S)
{
  S.front=S.rear=new QNode;
  S.front->next=NULL;
  return 1;
}
//3
int EnQueue(LinkQueue &S,int e)
{
  QNode *P;//注意是*P 不是 P
  P=new QNode;
  P->data=e;
  P->next=NULL;
  S.rear->next=P;//插入队尾
  S.rear=P;//修改队尾指针
  return 1;
}
//4
int DeQueue(LinkQueue &S)
{
  QNode *P;
  if(S.front==S.rear) return -1;
  P=S.front->next;//p指向队头元素
  cout<<P->data<<endl;
  S.front->next=P->next;//修改头结点的指针域
  if(S.rear==P) S.rear=S.front;//如果最后一个元素被删,队尾指针指向头结点
  delete P;
  return 1;
}
//5
int Trance(LinkQueue &S)
{
  QNode *P;
  if(S.front==S.rear) return -1;
  P=S.front->next;
  while(P)
  {
    cout<<P->data<<" ";
    P=P->next;
  }
  return 1;
}
int main()
{
  LinkQueue S;
  int n,m;
  cout<<"请选择:"<<endl;
  cout<<"1.初始化"<<endl;
  cout<<"2.队列是否空"<<endl;
  cout<<"3.入队"<<endl;
  cout<<"4.出队"<<endl;
  cout<<"5.遍历队列"<<endl;
  cout<<"0.结束"<<endl;
  for(;;)
  {
    int num;
    cin>>num;
    switch(num)
    {
      case 1:
        if(init(S)) cout<<"初始化成功"<<endl;
        else cout<<"初始化失败"<<endl;
        break;
      case 2:
        if(S.front==S.rear) cout<<"空队列"<<endl;
        else cout<<"非空队列"<<endl;
        break;
      case 3:
        cout<<"请输入需要入队的数目"<<endl;
        cin>>n;
        for(int i=0;i<n;i++)
        {
          cin>>m;
          if(EnQueue(S,m)) cout<<"入队成功"<<endl;
          else cout<<"入队失败"<<endl;
        }
        break;
      case 4:
        if(DeQueue(S)) cout<<"出队成功"<<endl;
        else cout<<"出队失败"<<endl;
        break;
      case 5:
        if(Trance(S)) cout<<"遍历成功"<<endl;
        else cout<<"遍历失败"<<endl;
        break;
      case 0:
        return 0;
    }
  }
}

😎附加题

       假设以数组Q[m]存放循环队列中的元素,同时设置一个标志tag,以tag= 0 和tag= 1来区别在队头指针(front)和队尾指针(rear)相等时,队列状态为“空” 还是“满"。


试编写与此结构相应的插入(Enqueue) 和删除(Dequeue) 算法。


🚥核心代码

#define m 10                                    // 定义循环队列的长度
int Q[m];                                       // 循环队列数组
int front = 0, rear = 0;                        // 队头指针和队尾指针
int tag = 0;                                    // 标志位,用于区分队空和队满状态
void Enqueue(int x) {                           // 插入元素到队尾
    if ((rear + 1) % m == front && tag == 0) {   // 判断队满
        cout << "队列已满" << endl;
        return;
    }
    Q[rear] = x;                                // 插入元素到队尾
    rear = (rear + 1) % m;                      // 队尾指针加1
    tag = 0;                                    // 标志为0表示队列不为空
}
int Dequeue() {                                 // 删除队头元素
    if (front == rear && tag == 1) {            // 判断队空
        cout << "队列已空" << endl;
        return -1;
    }
    int x = Q[front];                           // 取出队头元素
    front = (front + 1) % m;                    // 队头指针加1
    tag = 1;                                    // 标志为1表示队列不为满
    return x;
}

🥰如果大家有不明白的地方,或者文章有问题,欢迎大家在评论区讨论,指正🥰

Code over!

相关文章
|
14天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
90 9
|
17天前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
初步认识栈和队列
初步认识栈和队列
58 10
|
1月前
|
存储 算法 定位技术
数据结构与算法学习二、稀疏数组与队列,数组模拟队列,模拟环形队列
这篇文章主要介绍了稀疏数组和队列的概念、应用实例以及如何使用数组模拟队列和环形队列的实现方法。
20 0
数据结构与算法学习二、稀疏数组与队列,数组模拟队列,模拟环形队列
|
1月前
【数据结构】-- 栈和队列
【数据结构】-- 栈和队列
16 0
|
1月前
探索数据结构:队列的的实现与应用
探索数据结构:队列的的实现与应用
|
1月前
|
存储 C语言
栈和队列题目练习
栈和队列题目练习
16 0
|
5天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
14 1
|
8天前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
11天前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。