探索数据结构:队列的的实现与应用

简介: 探索数据结构:队列的的实现与应用

一、队列的概念

队列是一个线性的数据结构,并且这个数据结构只允许在一端进行插入,另一端进行删除,禁止直接访问除这两端以外的一切数据,且队列是一个先进先出的数据结构。

通常,称进数据的一端为队尾,出数据的一端为队首,数据元素进队列的过程称为入队,出队列的过程称为出队

队列与栈类似,实现方式有两种。一种是以数组的方式实现,另一种以单链表来实现。这两种实现方式各有优劣,并且都有细节需要处理。

二、队列的声明与初始化

队列只有链式的设计方法,其本身分为多种队列,如顺序队列和循环队列,还有衍生的优先队列等等,以顺序队列的设计为例。


首先是队列的结点设计,可以设计出两个结构体,一个结构体 Node 表示结点,其中包含有 data 针,如图:

其中 data 表示数据,其可以是简单的类型,也可以是复杂的结构体。next 指针表示,下一个的指针,其指向下一个结点,通过 next 指针将各个结点链接。


然后再添加一个结构体,其包括了两个分别永远指向队列的队尾和队首的指针,看到这里是不是觉得和栈很像?

主要的操作只对这两个指针进行操作,如图所示:


代码实现如下:

typedef int QDataType;
// 链式结构:表示队列 
typedef struct QListNode
{
  struct QListNode* next;
  QDataType val;
}QNode;
 
// 队列的结构 
typedef struct Queue
{
  QNode* phead;
  QNode* ptail;
  int size;
}Queue;


对于初始化需要初始化两个类型,一个是初始化结点,一个是初始化队列。代码中的描述,初始化队列有些不同,当初始化队列的时候,需要将头尾两个结点指向的内容统统置为空,表示是一个空队列,函数代码可以表示为:

void QueueInit(Queue* pq)
{
  assert(pq);
  pq->phead = NULL;
  pq->ptail = NULL;
  pq->size = 0;
}


三、入队

入队操作如图:

进行入队(push)操作的时候,同样的,首先需要判断队列是否为空,如果队列为空的话,需要将头指针和尾指针一同指向第一个结点



如果队列不为空的时候,这时只需要将尾结点向后移动,通过不断移动 next指针指向新的结点构成队列即可。

void QueuePush(Queue* pq, QDataType x)
{
  assert(pq);
  QNode* newnode = (QNode*)malloc(sizeof(QNode));
  if (newnode == NULL)
  {
    perror("realloc fail");
  }
  newnode->next = NULL;
  newnode->val = x;
  if (pq->ptail == NULL)
  {
    pq->phead = pq->ptail = newnode;
  }
  else
  {
    pq->ptail->next = newnode;
    pq->ptail = newnode;
  }
  pq->size++;
}


四、出队

出队操作如图:

出队(pop)操作,是指在队列不为空的情况下进行的一个判断,当然在此也一定要进行队列判空的操。


如图,如果队列只有一个元素了,也就是说头尾指针均指向了同一个结点,那么直接将头尾两指针置空,并释放这一个结点即可,如图:

当队列含有以上个元素时,需要将队列的头指针指向头指针当前指向的下一个元素,并释放掉当前元素即可,如图:


代码实现如下:

void QueuePop(Queue* pq)
{
  assert(pq);
  assert(pq->phead);
 
  if (pq->phead == pq->ptail)
  {
    free(pq->phead);
    pq->phead = pq->ptail = NULL;
  } 
  else
  {
    QNode* next = pq->phead;
    pq->phead = pq->phead->next;
    free(next);
  }
  pq->size--;
}


五、获取队头和队尾元素

我们有头尾节点的指针,只需要注意链表和节点元素不能为空即可

// 获取队列头部元素 
QDataType QueueFront(Queue* pq)
{
  assert(pq);
  assert(pq->phead);
 
  return pq->phead->val;
}
// 获取队列队尾元素 
QDataType QueueBack(Queue* pq)
{
  assert(pq);
  assert(pq->ptail);
 
  return pq->ptail->val;
}


六、获取队列中有效元素个数

1. int QueueSize(Queue* pq)
2. {
3.  assert(pq);
4.  return pq->size;
5. }


七、检测队列是否为空

1. bool QueueEmpty(Queue* pq)
2. {
3.  assert(pq);
4. 
5.  return pq->size == 0;
6. }


八、销毁队列

void QueueDestroy(Queue* pq)
{
  assert(pq);
  for (int i = 0; i < pq->size; i++)
  {
    QNode* next = pq->phead;
    pq->phead = pq->phead->next;
    free(next);
  }
  pq->phead = pq->ptail = NULL;
}


九、完整代码

9.1 Queue.h

typedef int QDataType;
// 链式结构:表示队列 
typedef struct QListNode
{
  struct QListNode* next;
  QDataType val;
}QNode;
 
// 队列的结构 
typedef struct Queue
{
  QNode* phead;
  QNode* ptail;
  int size;
}Queue;
 
// 初始化队列 
void QueueInit(Queue* pq);
// 队尾入队列 
void QueuePush(Queue* pq, QDataType x);
// 队头出队列 
void QueuePop(Queue* pq);
// 获取队列头部元素 
QDataType QueueFront(Queue* pq);
// 获取队列队尾元素 
QDataType QueueBack(Queue* pq);
// 获取队列中有效元素个数 
int QueueSize(Queue* pq);
// 检测队列是否为空
bool QueueEmpty(Queue* pq);
// 销毁队列 
void QueueDestroy(Queue* pq);


9.2 Queue.c

// 初始化队列
void QueueInit(Queue* pq)
{
  assert(pq);
  pq->phead = NULL;
  pq->ptail = NULL;
  pq->size = 0;
}
// 队尾入队列 
void QueuePush(Queue* pq, QDataType x)
{
  assert(pq);
  QNode* newnode = (QNode*)malloc(sizeof(QNode));
  if (newnode == NULL)
  {
    perror("realloc fail");
  }
  newnode->next = NULL;
  newnode->val = x;
  if (pq->ptail == NULL)
  {
    pq->phead = pq->ptail = newnode;
  }
  else
  {
    pq->ptail->next = newnode;
    pq->ptail = newnode;
  }
  pq->size++;
}
// 队头出队列 
void QueuePop(Queue* pq)
{
  assert(pq);
  assert(pq->phead);
 
  if (pq->phead == pq->ptail)
  {
    free(pq->phead);
    pq->phead = pq->ptail = NULL;
  } 
  else
  {
    QNode* next = pq->phead;
    pq->phead = pq->phead->next;
    free(next);
  }
  pq->size--;
}
// 获取队列头部元素 
QDataType QueueFront(Queue* pq)
{
  assert(pq);
  assert(pq->phead);
 
  return pq->phead->val;
}
// 获取队列队尾元素 
QDataType QueueBack(Queue* pq)
{
  assert(pq);
  assert(pq->ptail);
 
  return pq->ptail->val;
}
// 获取队列中有效元素个数 
int QueueSize(Queue* pq)
{
  assert(pq);
  return pq->size;
}
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
bool QueueEmpty(Queue* pq)
{
  assert(pq);
  
  return pq->size == 0;
}
// 销毁队列 
void QueueDestroy(Queue* pq)
{
  assert(pq);
  for (int i = 0; i < pq->size; i++)
  {
    QNode* next = pq->phead;
    pq->phead = pq->phead->next;
    free(next);
  }
  pq->phead = pq->ptail = NULL;
}
相关文章
|
2天前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1519 4
|
29天前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
5天前
|
人工智能 Rust Java
10月更文挑战赛火热启动,坚持热爱坚持创作!
开发者社区10月更文挑战,寻找热爱技术内容创作的你,欢迎来创作!
503 19
|
2天前
|
存储 SQL 关系型数据库
彻底搞懂InnoDB的MVCC多版本并发控制
本文详细介绍了InnoDB存储引擎中的两种并发控制方法:MVCC(多版本并发控制)和LBCC(基于锁的并发控制)。MVCC通过记录版本信息和使用快照读取机制,实现了高并发下的读写操作,而LBCC则通过加锁机制控制并发访问。文章深入探讨了MVCC的工作原理,包括插入、删除、修改流程及查询过程中的快照读取机制。通过多个案例演示了不同隔离级别下MVCC的具体表现,并解释了事务ID的分配和管理方式。最后,对比了四种隔离级别的性能特点,帮助读者理解如何根据具体需求选择合适的隔离级别以优化数据库性能。
179 1
|
8天前
|
JSON 自然语言处理 数据管理
阿里云百炼产品月刊【2024年9月】
阿里云百炼产品月刊【2024年9月】,涵盖本月产品和功能发布、活动,应用实践等内容,帮助您快速了解阿里云百炼产品的最新动态。
阿里云百炼产品月刊【2024年9月】
|
21天前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
|
9天前
|
Linux 虚拟化 开发者
一键将CentOs的yum源更换为国内阿里yum源
一键将CentOs的yum源更换为国内阿里yum源
457 5
|
7天前
|
存储 人工智能 搜索推荐
数据治理,是时候打破刻板印象了
瓴羊智能数据建设与治理产品Datapin全面升级,可演进扩展的数据架构体系为企业数据治理预留发展空间,推出敏捷版用以解决企业数据量不大但需构建数据的场景问题,基于大模型打造的DataAgent更是为企业用好数据资产提供了便利。
314 2
|
23天前
|
人工智能 IDE 程序员
期盼已久!通义灵码 AI 程序员开启邀测,全流程开发仅用几分钟
在云栖大会上,阿里云云原生应用平台负责人丁宇宣布,「通义灵码」完成全面升级,并正式发布 AI 程序员。
|
25天前
|
机器学习/深度学习 算法 大数据
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
2608 22
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析