跟着Nature Communications学作图:R语言箱线图和拟合曲线展示泛基因组中的基因家族数量

简介: 跟着Nature Communications学作图:R语言箱线图和拟合曲线展示泛基因组中的基因家族数量

论文

Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics

https://www.nature.com/articles/s41467-020-14779-y

拟南芥NC_panGenome.pdf

分析代码的github主页

https://github.com/schneebergerlab/AMPRIL-genomes

论文中组装了7个拟南芥的基因组,做了一些泛基因组相关的分析,数据和大部分代码都公开了,我们试着复现一下其中的图和一些分析过程,今天的推文复现一下论文中的figure2d 下侧的小图,泛基因组分析的论文里通常都有这个图

image.png

这个展示的也是基因家族,先用orthorfinder做聚类,然后利用orthorfinder的结果进行统计,作图数据整理成了如下格式,数据有两个,一个是泛基因组的基因家族数量,一个是核心基因家族的数量,如何根据orthorfinder结果统计得到这个表格,论文对应的github主页也提供了相应的脚本,今天主要介绍画图

论文中提供的代码是用R语言的基础绘图函数做的,这里我们用ggplot2来作图

首先是核心基因家族

可以用连续的点或者我也看到有用箱线图做的

这里我用箱线图,看起来可能会好看一点

library(tidyverse)
library(ggplot2)

dat01<-read.table("data/20230318/Source_Data.Figure2/Fig2d/pan-genome.gene.clustering.core-genome.txt",
                  header = FALSE)

ggplot()+
  geom_boxplot(data=dat01,aes(x=factor(V1),y=V2),fill="#3ba889")

image.png

拟合模型并添加拟合曲线

xvalue_core<-dat01 %>% pull(V1)
yvalue_core<-dat01 %>% pull(V2)

model_core<-nls(yvalue_core~A*exp(B*xvalue_core)+C,
                start = list(A=800,B=-0.3,C=800))
summary(model_core)

dat_core<-data.frame(x=seq(1,8,by=0.1),
                     y=predict(model_core,newdata = data.frame(xvalue_core=seq(1,8,by=0.1))))

ggplot()+
  geom_boxplot(data=dat01,aes(x=factor(V1),y=V2),fill="#3ba889")+
  geom_line(data=dat_core,aes(x=x,y=y),
            lty="dashed")

image.png

泛基因组

dat02<-read.table("data/20230318/Source_Data.Figure2/Fig2d/pan-genome.gene.clustering.pan-genome.txt",
                  header = FALSE)

xvalue_pan<-dat02 %>% pull(V1)
yvalue_pan<-dat02 %>% pull(V2)

model_pan<-nls(yvalue_pan~A*exp(B*xvalue_pan)+C,
             start = list(A=800,B=-0.3,C=800))
model_pan
summary(model_pan)
dat_pan<-data.frame(x=seq(1,8,by=0.1),
                    y=predict(model_pan,newdata = data.frame(xvalue_pan=seq(1,8,by=0.1))))

合起来作图和美化

ggplot()+
  geom_boxplot(data=dat01,aes(x=factor(V1),y=V2),fill="#3ba889")+
  geom_line(data=dat_core,aes(x=x,y=y),
            lty="dashed")+
  geom_boxplot(data=dat02,aes(x=factor(V1),y=V2),fill="#4593c3")+
  geom_line(data=dat_pan,aes(x=x,y=y),
            lty="dashed")+
  theme_bw()+
  theme(panel.grid = element_blank())+
  labs(x="Number of genomes",y="Pan-enome size\n(gene number)") -> p1

ggplot()+
  geom_boxplot(data=dat01,aes(x=factor(V1),y=V2),fill="#f18e0c")+
  geom_line(data=dat_core,aes(x=x,y=y),
            lty="dashed")+
  geom_boxplot(data=dat02,aes(x=factor(V1),y=V2),fill="#af2934")+
  geom_line(data=dat_pan,aes(x=x,y=y),
            lty="dashed")+
  theme_bw()+
  theme(panel.grid = element_blank())+
  labs(x="Number of genomes",y="Pan-enome size\n(gene number)") -> p2

p2

library(patchwork)
p1+p2

image.png

这里有个问题是nls()函数拟合的时候会有一个start参数,这个参数里的值怎么确定,暂时没有想明白

示例数据和代码可以给推文点赞,然后点击在看,最后留言获取

欢迎大家关注我的公众号

小明的数据分析笔记本

小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!

微信公众号好像又有改动,如果没有将这个公众号设为星标的话,会经常错过公众号的推文,个人建议将 小明的数据分析笔记本 公众号添加星标,添加方法是

点开公众号的页面,右上角有三个点

image.png

点击三个点,会跳出界面

image.png

直接点击 设为星标 就可以了

相关文章
|
6月前
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
|
6月前
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
6月前
|
数据可视化
【R语言实战】——金融时序分布拟合
【R语言实战】——金融时序分布拟合
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
2月前
|
机器学习/深度学习
R语言模型评估:深入理解混淆矩阵与ROC曲线
【9月更文挑战第2天】混淆矩阵和ROC曲线是评估分类模型性能的两种重要工具。混淆矩阵提供了模型在不同类别上的详细表现,而ROC曲线则通过综合考虑真正率和假正率来全面评估模型的分类能力。在R语言中,利用`caret`和`pROC`等包可以方便地实现这两种评估方法,从而帮助我们更好地理解和选择最适合当前任务的模型。
|
6月前
|
数据可视化 数据挖掘 索引
R语言层次聚类、多维缩放MDS分类RNA测序(RNA-seq)乳腺发育基因数据可视化|附数据代码2
R语言层次聚类、多维缩放MDS分类RNA测序(RNA-seq)乳腺发育基因数据可视化|附数据代码
|
6月前
|
机器学习/深度学习 数据可视化 算法
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为1
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
6月前
|
存储 数据采集 数据可视化
R语言拟合线性混合效应模型、固定效应随机效应参数估计可视化生物生长、发育、繁殖影响因素
R语言拟合线性混合效应模型、固定效应随机效应参数估计可视化生物生长、发育、繁殖影响因素
|
6月前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言逻辑回归logistic对ST股票风险建模分类分析混淆矩阵、ROC曲线可视化
R语言逻辑回归logistic对ST股票风险建模分类分析混淆矩阵、ROC曲线可视化
|
6月前
|
存储 数据可视化 数据挖掘
R语言层次聚类、多维缩放MDS分类RNA测序(RNA-seq)乳腺发育基因数据可视化|附数据代码1
R语言层次聚类、多维缩放MDS分类RNA测序(RNA-seq)乳腺发育基因数据可视化|附数据代码