R语言非线性方程数值分析生物降解、植物生长数据:多项式、渐近回归、米氏方程、逻辑曲线、Gompertz、Weibull曲线(下)

简介: R语言非线性方程数值分析生物降解、植物生长数据:多项式、渐近回归、米氏方程、逻辑曲线、Gompertz、Weibull曲线

R语言非线性方程数值分析生物降解、植物生长数据:多项式、渐近回归、米氏方程、逻辑曲线、Gompertz、Weibull曲线(上):https://developer.aliyun.com/article/1498728


对数方程

这确实是一个对数转化后的线性模型:

image.png

可以使用 'lm()' 函数来拟合对数方程。

# b 是正值
model <- lm(Y ~ log(X) )
summary(model)

image.png

summary(model)

image.png

plot(model,

image.png

# b 是负值
X <- c(1,2,4,5,7,12)
a <- 2; b <- -0.5
summary(model)

image.png

plot(model, log="",

image.png

Michaelis-Menten方程

这是一个双曲线形状的方程,通常参数化为:

image.png

这条曲线朝上凸起,随着X 的增加而增加,直到达到一个平台水平。参数a 表示高位渐近线(对于X),而b 是使得响应等于a/2X值。事实上,很容易证明:

image.png

由此可得,b=x50=50

斜率(一阶导数)为:

D(expression( (a*X) / (b + X) ), "X")

image.png

从这里可以看出,初始斜率(在X=0时)为 i=a/b

res <- rnorm(8, 0, 0.1)
Y <- Ye + res
# nls拟合
mol <- nls(Y ~ SSien(X, a, b))
summary(model)

image.png

# drm拟合
summary(model)

image.png

plot(model, log="", main = "Mic

image.png

"drc"包还包含自启动函数 "MM.3()",其中当 X=0 时,允许 Y ≠ c ≠ 0。

产量损失/密度曲线

杂草与农作物竞争研究使用重新参数化的Michaelis-Menten模型。实际上,Michaelis-Menten的初始斜率可以被视为竞争的测量,即在首次添加杂草到系统中时产量(Y)的减少。因此,将Michaelis-Methen模型重新参数化以将i=a/b=α/β作为显式参数进行描述。重新参数化的方程为:

image.png

该模型可用于描述杂草密度对产量损失的影响。因此需要使用无杂草的产量和以下方程来计算产量损失(百分比):

image.png

其中,YW是观测到的产量,YWF是无杂草的产量。下面以日葵种植在增加密度的Sinapis arvensis杂草中的情况为例进行说明。

competition$YL <- (Ywf - competition$Yield) / Ywf * 100
# nls拟合
summary(model)

image.png

# drm拟合
summary(model)

image.png

plot(model, log="

image.png

上述拟合约束了当杂草密度为0时,产量损失为0。

确实,从上述方程我们推导出:

image.png

和所示:

image.png

model <- dr
summary(model)

image.png

plot(model

image.png

S 型曲线


S 型曲线具有 S 形状,可以是递增、递减、对称或非对称的。它们有许多参数化方法,有时可能让人困惑。因此,我们将展示一种常见的参数化方法,这在生物学方面非常有用。


逻辑曲线

逻辑曲线来源于累积逻辑分布函数;曲线在拐点处对称,并可以参数化为:

image.png

其中,d 是上渐近线,c 是下渐近线,e 是在 d 和 c 之间产生响应的 X 值,而 b 是拐点附近的斜率。参数 b 可以是正数或负数,因此 Y 可以随着 X 的增加而增加或减少。

逻辑函数非常有用,例如用于植物生长研究。

model <- dm(weightFree ~ DAE, fct =
sum

image.png

plot(model, log="",

image.png

Gompertz 曲线

Gompertz 曲线有许多参数化方法。我们倾向于使用与逻辑函数相似的参数化方法:

image.png

其中参数的含义与逻辑函数中的参数相同。不同之处在于该曲线在拐点处不对称。

另一种不对称性

我们已经看到,相对于逻辑函数,Gompertz 函数在开始时呈现更长的延迟,但之后稳步上升。我们可以通过以下方式更改 Gompertz 函数来描述不同的模式:

image.png

该函数的自启动函数尚不可用,至少在我所知道的范围内。此外,我也不知道这个函数的特定名称。

通过在图表中比较这三个逻辑函数,我们可以看到它们在偏斜和对称性方面的差异。

curve( E.fun(x, b, c, d, e), add = T, col = "blue" )
legen

image.png

基于对数的 S 型曲线


在生物学中,测量的数值通常是严格为正的(时间、重量、高度、计数)。因此,使用对非正数也定义的函数可能看起来不现实。因此,通常更倾向于使用独立变量 X 被限制为正的函数。所有上述描述的 S 型曲线都可以基于 X 的对数进行,这样我们可以得到更现实的模型。


对数-逻辑曲线

在许多应用中,S 型响应曲线在 x 的对数上是对称的,这需要一个对数-逻辑曲线(对数正态曲线实际上几乎等效,但很少使用)。例如,在生物测定中(但也在萌发测定中),对数-逻辑曲线定义如下:

image.png

参数的含义与上述逻辑方程中的含义相同。很容易看出上述方程等价于:

image.png

另一种可能的参数化方法是所谓的 Hill 函数:

image.png

确实:

image.png

对数-逻辑函数用于作物生长、种子萌发和生物测定,它们可以具有与逻辑函数相同的约束条件。

我们展示了一个基于对数-逻辑拟合的示例,涉及到对一个除草剂处理的甘蓝菜生物测定中不断增加剂量的关系。

dm(FW~ Dose,fct = L.4(),data =brssica)
summary(model)

image.png

plot(model, main = "对数-逻辑方程")

image.png

Weibull 曲线(类型 1)

类型 1 Weibull 曲线与替代 Gompertz 曲线的对数-逻辑曲线相似。方程如下:

image.png

参数与上述其他 S 型曲线的含义相同。

Weibull 曲线(类型 2)

类型 2 Weibull 曲线与 Gompertz 曲线的对数-逻辑曲线相似。方程如下:

image.png

参数与上述其他 S 型曲线的含义相同。

我们将对这些 Weibull 曲线拟合数据集。

plot(model, main = "Weibull functions")
plo

image.png

相关文章
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
5月前
|
存储 数据采集 数据处理
R语言数据变换:使用tidyr包进行高效数据整形的探索
【8月更文挑战第29天】`tidyr`包为R语言的数据整形提供了强大的工具。通过`pivot_longer()`、`pivot_wider()`、`separate()`和`unite()`等函数,我们可以轻松地将数据从一种格式转换为另一种格式,以满足不同的分析需求。掌握这些函数的使用,将大大提高我们处理和分析数据的效率。
|
4月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
4月前
|
数据采集 数据可视化 数据挖掘
使用R语言进行生物统计分析:探索生命科学的奥秘
【9月更文挑战第1天】通过上述实例,我们可以看到R语言在生物统计分析中的强大功能。从数据准备、差异表达分析到结果可视化,R语言提供了一整套完整的解决方案。随着生物数据的不断积累和分析技术的不断进步,R语言在生物统计分析中的应用前景将更加广阔。我们相信,通过不断学习和实践,R语言将成为每一位生物统计学家不可或缺的工具。
|
4月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
4月前
|
机器学习/深度学习
R语言模型评估:深入理解混淆矩阵与ROC曲线
【9月更文挑战第2天】混淆矩阵和ROC曲线是评估分类模型性能的两种重要工具。混淆矩阵提供了模型在不同类别上的详细表现,而ROC曲线则通过综合考虑真正率和假正率来全面评估模型的分类能力。在R语言中,利用`caret`和`pROC`等包可以方便地实现这两种评估方法,从而帮助我们更好地理解和选择最适合当前任务的模型。
|
5月前
|
数据采集 机器学习/深度学习 数据挖掘
R语言数据清洗:高效处理缺失值与重复数据的策略
【8月更文挑战第29天】处理缺失值和重复数据是数据清洗中的基础而重要的步骤。在R语言中,我们拥有多种工具和方法来有效地应对这些问题。通过识别、删除或插补缺失值,以及删除重复数据,我们可以提高数据集的质量和可靠性,为后续的数据分析和建模工作打下坚实的基础。 需要注意的是,处理缺失值和重复数据时,我们应根据实际情况和数据特性选择合适的方法,并在处理过程中保持谨慎,以避免引入新的偏差或错误。
|
5月前
|
数据处理
R语言数据合并:掌握`merge`与`dplyr`中`join`的巧妙技巧
【8月更文挑战第29天】如果你已经在使用`dplyr`进行数据处理,那么推荐使用`dplyr::join`进行数据合并,因为它与`dplyr`的其他函数(如`filter()`、`select()`、`mutate()`等)无缝集成,能够提供更加流畅和一致的数据处理体验。如果你的代码中尚未使用`dplyr`,但想要尝试,那么`dplyr::join`将是一个很好的起点。
|
5月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
5月前
|
SQL 数据挖掘 数据处理
R语言数据操作:使用dplyr进行数据处理的深度探索
【8月更文挑战第27天】`dplyr`包以其简洁、强大的数据处理能力,在R语言的数据分析领域占据了重要地位。通过`select()`、`filter()`、`arrange()`、`mutate()`和`summarise()`等核心函数,结合管道操作符`%>%`,我们可以轻松地完成数据筛选、排序、变换和汇总等操作。掌握`dplyr`的使用,将极大地提高我们在R语言中进行