Hinton坐阵!斯坦福CS25 Transformer专题讲座更新:多位AI大佬齐聚

简介: Hinton坐阵!斯坦福CS25 Transformer专题讲座更新:多位AI大佬齐聚
【新智元导读】斯坦福大牛Christopher Manning开设的Transformer联合讲座课程更新啦!这期请来的是Hinton大神。


图灵奖得主、深度学习教父Geoffrey Hinton在斯坦福线上开课啦?本课程是斯坦福大学计算机科学家Christopher Manning教授开设的CS25: Transformers United联合讲座课程。课程邀请了学术界和产业界关于Transformer架构的知名学者和工程师主讲,来自谷歌、OpenAI、牛津大学、Meta AI、DeepMind等学术机构和企业。本讲座共分10期,随授课内容推进而陆续在线更新视频。(第一期为总览介绍)最近更新的是最后一期,主讲人是大名鼎鼎的人工智能领域先驱人物、图灵奖得主Geoffrey Hinton。讲座链接就放在这里啦,有兴趣的童鞋可以看看~https://www.youtube.com/playlist?list=PLoROMvodv4rNiJRchCzutFw5ItR_Z27CM这期课程中,Hinton提出了一个关于表征的新想法,名为GLOM的想象系统,由几个不同团队研究成果的结合。其中包括Transformer、神经场、对比性表征学习等内容。GLOM要解决的问题是,一个具有固定架构的神经网络如何能将一幅图像解析成一个「部分-整体」的层次结构,且结果对每一幅图像都是不同的?GLOM背后的想法很简单,就是用相同矢量的岛屿来表示解析树中的节点。在这期讲座中,将讨论这个想法的影响。如果GLOM能够发挥作用,那么当其用于视觉或语言时,应该能极大地改善由类似transformer系统产生的表示的可解释性。Hinton在这期讲座中将最近神经网络领域的三个重要成果融合在了一起,即Transformer、通过对比协议的非监督学习的视觉表示、以及使用神经野图像的生成模型。Hinton表示,他将这三项成果组合在一起,搞出一个新的图像视觉系统,名叫GLOM, 比现有深度网络更接近人类认知。Geoffrey Hinton是多伦多大学的名誉教授,深度学习界的领军人物,是引入反向传播算法的先驱研究者之一,并与他的研究小组一起,为推动神经网络领域的发展做出了重大突破和贡献。Hinton荣誉等身,曾获David E. Rumelhart奖、IJCAI卓越研究奖、Killam工程奖、IEEE Frank Rosenblatt奖章、NSERC Herzberg金奖、IEEE James Clerk Maxwell金奖、NEC C&C奖、BBVA奖、本田奖和图灵奖。说了那么多,先来看看这十期课程都有哪些干货吧~1.Introduction to Transformers(引入课程)主讲人: Div Grag,Chetanya Rastogi,Advay Pal推荐阅读:Attention Is All You Need论文地址:https://arxiv.org/abs/1706.037622.Transformers in Language: GPT-3, Codex主讲人:Mark Chen (OpenAI)这节课的主讲人Mark Chen是来自OpenAI的一名研究科学家,负责管理OpenAI的算法团队。他的研究兴趣包括生成建模和表示学习,尤其是在图像和多模态领域。Mark毕业于麻省理工学院,值得一提的是,Mark还是美国计算机奥赛的教练。本节课程回顾了神经语言建模的最新进展,并讨论了生成文本(generating text)和解决下游任务之间的联系,并探讨OpenAI开发GPT模型的过程。接下来,我们将看到如何使用相同的方法在图像、文本到图像和代码等其他领域生成生成模型和强表示。课程最后,我们将深入研究最近发布的代码生成模型 Codex。3.Transformers in Vision: Tackling problems in Computer Vision主讲人:Lucas Beyer (Google Research Brain Team)推荐阅读:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale论文地址:https://arxiv.org/abs/2010.119294. Decision Transformer: Reinforcement Learning via Sequence Modeling主讲人:Aditya Grover推荐阅读:Pretrained Transformers as Universal Computation Engines论文地址:https://arxiv.org/abs/2103.052475. Mixture of Experts (MoE) paradigm and the Switch Transformer主讲人:Barret Zoph (Google Brain) ,Irwan Bello,Liam Fedus6.Deep Mind's Perceiver and Perceiver IO: new data family architecture主讲人:Andrew Jaegle (DeepMind)7.Self Attention and Non-parametric transformers (NPTs)主讲人:Aidan Gomez (University of Oxford)8.Transformer Circuits, Induction Heads, In-Context Learning主讲人:Chris Olah (Anthropic AI)9.Audio Research: Transformers for Applications in Audio, Speech and Music主讲人:Prateek Verma (Stanford)
参考资料:https://twitter.com/DivGarg9/status/1545541542235975682?s=20&t=_Ed9dpjD9Qpx4svpMNDIKQ&fbclid=IwAR2tnSQROnkOQl15aa6nkfNFaJdrnZQHDbidooDaQRJALlWsYMiQU_37dn4https://web.stanford.edu/class/cs25/

相关文章
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
Transformer架构:重塑现代AI的核心引擎
Transformer架构:重塑现代AI的核心引擎
504 98
|
8月前
|
人工智能 并行计算 Linux
斯坦福黑科技让笔记本GPU也能玩转AI视频生成!FramePack:压缩输入帧上下文长度!仅需6GB显存即可生成高清动画
斯坦福大学推出的FramePack技术通过压缩输入帧上下文长度,解决视频生成中的"遗忘"和"漂移"问题,仅需6GB显存即可在普通笔记本上实时生成高清视频。
1982 19
斯坦福黑科技让笔记本GPU也能玩转AI视频生成!FramePack:压缩输入帧上下文长度!仅需6GB显存即可生成高清动画
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
​​超越CNN与RNN:为什么Transformer是AI发展的必然选择?​
本文深入解析Transformer及其在AI领域的三大突破:自然语言处理、视觉识别(ViT)与图像生成(DiT)。以“注意力即一切”为核心,揭示其如何成为AI时代的通用架构。
485 2
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
用AI精准定位问题代码,调试时间直接砍半!LocAgent:斯坦福开源代码调试神器,多跳推理锁定问题代码
LocAgent是由斯坦福大学、耶鲁大学等顶尖机构联合开发的代码定位框架,通过将代码库转化为图结构并利用大语言模型的多跳推理能力,实现精准的问题代码定位。
770 1
用AI精准定位问题代码,调试时间直接砍半!LocAgent:斯坦福开源代码调试神器,多跳推理锁定问题代码
|
10月前
|
人工智能 NoSQL Redis
Collaborative Gym:斯坦福人机协作框架开源!异步交互+三方感知,让你的AI学会主动补位
介绍Collaborative Gym,一个专注于人机协作的框架,支持异步交互和多种任务环境。
404 14
Collaborative Gym:斯坦福人机协作框架开源!异步交互+三方感知,让你的AI学会主动补位
|
11月前
|
机器学习/深度学习 人工智能
斯坦福伯克利重磅发现DNA Scaling Law,Evo荣登Science封面!AI设计DNA/RNA/蛋白质再突破
近日,斯坦福大学和加州大学伯克利分校在《科学》杂志发表重要成果,发现DNA Scaling Law规律,揭示了DNA、RNA和蛋白质分子长度与碱基对数量之间的比例关系。该研究为AI设计生物分子带来突破,通过数据收集、模型训练和优化设计等步骤,显著提高设计效率和准确性,降低成本,并拓展应用范围。论文地址:https://www.science.org/doi/10.1126/science.ado9336。
291 26
|
11月前
|
机器学习/深度学习 人工智能 算法
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
282 13
|
11月前
|
机器学习/深度学习 数据采集 人工智能
昇腾AI行业案例(七):基于 Conformer 和 Transformer 模型的中文语音识别
欢迎学习《基于 Conformer 和 Transformer 模型的中文语音识别》实验。本案例旨在帮助你深入了解如何运用深度学习模型搭建一个高效精准的语音识别系统,将中文语音信号转换成文字,并利用开源数据集对模型效果加以验证。
407 12
|
机器学习/深度学习 人工智能 编解码
【AI系统】Transformer 模型小型化
本文介绍了几种轻量级的 Transformer 模型,旨在解决传统 Transformer 参数庞大、计算资源消耗大的问题。主要包括 **MobileVit** 和 **MobileFormer** 系列,以及 **EfficientFormer**。MobileVit 通过结合 CNN 和 Transformer 的优势,实现了轻量级视觉模型,特别适合移动设备。MobileFormer 则通过并行结构融合了 MobileNet 和 Transformer,增强了模型的局部和全局表达能力。
660 8
【AI系统】Transformer 模型小型化
|
人工智能 自然语言处理 物联网
AI Safeguard联合 CMU,斯坦福提出端侧多模态小模型
随着人工智能的快速发展,多模态大模型(MLLMs)在计算机视觉、自然语言处理和多模态任务中扮演着重要角色。
273 0

热门文章

最新文章