Hinton坐阵!斯坦福CS25 Transformer专题讲座更新:多位AI大佬齐聚

简介: Hinton坐阵!斯坦福CS25 Transformer专题讲座更新:多位AI大佬齐聚
【新智元导读】斯坦福大牛Christopher Manning开设的Transformer联合讲座课程更新啦!这期请来的是Hinton大神。


图灵奖得主、深度学习教父Geoffrey Hinton在斯坦福线上开课啦?本课程是斯坦福大学计算机科学家Christopher Manning教授开设的CS25: Transformers United联合讲座课程。课程邀请了学术界和产业界关于Transformer架构的知名学者和工程师主讲,来自谷歌、OpenAI、牛津大学、Meta AI、DeepMind等学术机构和企业。本讲座共分10期,随授课内容推进而陆续在线更新视频。(第一期为总览介绍)最近更新的是最后一期,主讲人是大名鼎鼎的人工智能领域先驱人物、图灵奖得主Geoffrey Hinton。讲座链接就放在这里啦,有兴趣的童鞋可以看看~https://www.youtube.com/playlist?list=PLoROMvodv4rNiJRchCzutFw5ItR_Z27CM这期课程中,Hinton提出了一个关于表征的新想法,名为GLOM的想象系统,由几个不同团队研究成果的结合。其中包括Transformer、神经场、对比性表征学习等内容。GLOM要解决的问题是,一个具有固定架构的神经网络如何能将一幅图像解析成一个「部分-整体」的层次结构,且结果对每一幅图像都是不同的?GLOM背后的想法很简单,就是用相同矢量的岛屿来表示解析树中的节点。在这期讲座中,将讨论这个想法的影响。如果GLOM能够发挥作用,那么当其用于视觉或语言时,应该能极大地改善由类似transformer系统产生的表示的可解释性。Hinton在这期讲座中将最近神经网络领域的三个重要成果融合在了一起,即Transformer、通过对比协议的非监督学习的视觉表示、以及使用神经野图像的生成模型。Hinton表示,他将这三项成果组合在一起,搞出一个新的图像视觉系统,名叫GLOM, 比现有深度网络更接近人类认知。Geoffrey Hinton是多伦多大学的名誉教授,深度学习界的领军人物,是引入反向传播算法的先驱研究者之一,并与他的研究小组一起,为推动神经网络领域的发展做出了重大突破和贡献。Hinton荣誉等身,曾获David E. Rumelhart奖、IJCAI卓越研究奖、Killam工程奖、IEEE Frank Rosenblatt奖章、NSERC Herzberg金奖、IEEE James Clerk Maxwell金奖、NEC C&C奖、BBVA奖、本田奖和图灵奖。说了那么多,先来看看这十期课程都有哪些干货吧~1.Introduction to Transformers(引入课程)主讲人: Div Grag,Chetanya Rastogi,Advay Pal推荐阅读:Attention Is All You Need论文地址:https://arxiv.org/abs/1706.037622.Transformers in Language: GPT-3, Codex主讲人:Mark Chen (OpenAI)这节课的主讲人Mark Chen是来自OpenAI的一名研究科学家,负责管理OpenAI的算法团队。他的研究兴趣包括生成建模和表示学习,尤其是在图像和多模态领域。Mark毕业于麻省理工学院,值得一提的是,Mark还是美国计算机奥赛的教练。本节课程回顾了神经语言建模的最新进展,并讨论了生成文本(generating text)和解决下游任务之间的联系,并探讨OpenAI开发GPT模型的过程。接下来,我们将看到如何使用相同的方法在图像、文本到图像和代码等其他领域生成生成模型和强表示。课程最后,我们将深入研究最近发布的代码生成模型 Codex。3.Transformers in Vision: Tackling problems in Computer Vision主讲人:Lucas Beyer (Google Research Brain Team)推荐阅读:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale论文地址:https://arxiv.org/abs/2010.119294. Decision Transformer: Reinforcement Learning via Sequence Modeling主讲人:Aditya Grover推荐阅读:Pretrained Transformers as Universal Computation Engines论文地址:https://arxiv.org/abs/2103.052475. Mixture of Experts (MoE) paradigm and the Switch Transformer主讲人:Barret Zoph (Google Brain) ,Irwan Bello,Liam Fedus6.Deep Mind's Perceiver and Perceiver IO: new data family architecture主讲人:Andrew Jaegle (DeepMind)7.Self Attention and Non-parametric transformers (NPTs)主讲人:Aidan Gomez (University of Oxford)8.Transformer Circuits, Induction Heads, In-Context Learning主讲人:Chris Olah (Anthropic AI)9.Audio Research: Transformers for Applications in Audio, Speech and Music主讲人:Prateek Verma (Stanford)
参考资料:https://twitter.com/DivGarg9/status/1545541542235975682?s=20&t=_Ed9dpjD9Qpx4svpMNDIKQ&fbclid=IwAR2tnSQROnkOQl15aa6nkfNFaJdrnZQHDbidooDaQRJALlWsYMiQU_37dn4https://web.stanford.edu/class/cs25/

相关文章
|
2月前
|
机器学习/深度学习 人工智能 数据可视化
首个全自动科学发现AI系统,Transformer作者创业公司Sakana AI推出AI Scientist
【9月更文挑战第11天】Sakana AI公司近日推出全球首个全自动科学发现AI系统——AI Scientist,实现了人工智能在科学研究领域的重大突破。AI Scientist不仅能独立完成从假设提出到实验设计、数据分析及论文撰写的全过程,还能通过模拟评审提升研究成果的质量。该系统已成功应用于机器学习的多个子领域,并产出达到顶级会议标准的论文。尽管其高效性备受赞誉,但也引发了关于研究可信度和潜在风险的讨论。Sakana AI强调,系统具备可追溯的决策过程与严格的评审机制,确保了研究的可靠性和透明度。论文详情参见:[链接]。
75 6
|
3天前
|
机器学习/深度学习 人工智能 机器人
何恺明新作出炉!异构预训练Transformer颠覆本体视觉学习范式,AI性能暴涨超20%
【10月更文挑战第29天】在机器人学习领域,训练通用模型面临数据异构性的挑战。近期研究“Scaling Proprioceptive-Visual Learning with Heterogeneous Pre-trained Transformers”提出异构预训练Transformer(HPT),通过大规模预训练学习跨不同本体和任务的共享表示,显著提升了性能。实验结果显示,HPT在未见过的任务上表现优异,性能提升超过20%。
17 6
|
28天前
|
人工智能 自然语言处理
召唤100多位学者打分,斯坦福新研究:AI科学家创新确实强
【10月更文挑战第6天】斯坦福大学最新研究评估了大型语言模型(LLMs)在生成新颖研究想法方面的能力,通过100多位NLP专家盲评LLMs与人类研究人员提出的想法。结果显示,LLMs在新颖性方面超越人类(p < 0.05),但在可行性上略逊一筹。研究揭示了LLMs作为科研工具的潜力与挑战,并提出了进一步验证其实际效果的设计。论文详见:https://arxiv.org/abs/2409.04109。
37 6
|
1月前
|
人工智能
用AI人模拟社会学实验,居然成功了?斯坦福、NYU用GPT-4模仿人类,准确度惊人!
斯坦福大学和纽约大学的研究团队利用GPT-4模型成功模拟了人类在社交互动中的行为模式,实验结果显示AI能以惊人准确度模仿人类对话,甚至在在线论坛和社交媒体上与真人难以区分。这一突破不仅展示了AI在社会学研究中的巨大潜力,还引发了对AI伦理和透明度的深入探讨。尽管存在一些局限性和挑战,这项研究为未来社会学实验提供了新工具和方法。[论文地址:https://docsend.com/view/qeeccuggec56k9hd]
52 2
|
3月前
|
人工智能 算法 数据安全/隐私保护
无表情人脸预测政治信仰,AI准确率惊人!斯坦福研究登国际顶刊
【8月更文挑战第10天】斯坦福大学的研究揭示了面部识别技术的新应用:通过分析无表情人脸图片预测政治倾向。研究在《American Psychologist》发表,表明人类评估者与AI均能在控制人口统计学特征的情况下准确预测政治取向,相关系数分别为0.21和0.22。利用年龄、性别和种族信息时,算法准确性提升至0.31。研究还发现保守派倾向于有更大的下半部面部。尽管成果引人注目,但其局限性和潜在的隐私问题仍需审慎考量。
137 62
|
2月前
|
人工智能 测试技术
语言图像模型大一统!Meta将Transformer和Diffusion融合,多模态AI王者登场
【9月更文挑战第20天】Meta研究人员提出了一种名为Transfusion的创新方法,通过融合Transformer和Diffusion模型,实现了能同时处理文本和图像数据的多模态模型。此模型结合了语言模型的预测能力和Diffusion模型的生成能力,能够在单一架构中处理混合模态数据,有效学习文本与图像间的复杂关系,提升跨模态理解和生成效果。经过大规模预训练,Transfusion模型在多种基准测试中表现出色,尤其在图像压缩和模态特定编码方面具有优势。然而,其训练所需的大量计算资源和数据、以及潜在的伦理和隐私问题仍需关注。
68 7
|
1月前
|
机器学习/深度学习 人工智能
【AI大模型】深入Transformer架构:编码器部分的实现与解析(下)
【AI大模型】深入Transformer架构:编码器部分的实现与解析(下)
|
2月前
|
人工智能 并行计算 PyTorch
AI计算机视觉笔记十八:Swin Transformer目标检测环境搭建
本文详细记录了Swin Transformer在AutoDL平台上的环境搭建与训练过程。作者从租用GPU实例开始,逐步介绍了虚拟环境的创建、PyTorch安装、mmcv及mmdetection的配置,并解决了安装过程中遇到的各种问题,如cython版本冲突等。最后,通过修改代码实现目标检测结果的保存。如需了解更多细节或获取完整代码,请联系作者。原文链接:[原文链接](请在此处插入原文链接)。
|
2月前
|
人工智能 计算机视觉 Python
AI计算机视觉笔记十九:Swin Transformer训练
本文介绍了使用自定义数据集训练和测试目标检测模型的步骤。首先,通过安装并使用标注工具labelme准备数据集;接着修改配置文件以适应自定义类别,并调整预训练模型;然后解决训练过程中遇到的依赖冲突问题并完成模型训练;最后利用测试命令验证模型效果。文中提供了具体命令及文件修改指导。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介
**RNN**,1986年提出,用于序列数据,如语言模型和语音识别,但原始模型有梯度消失问题。**LSTM**和**GRU**通过门控解决了此问题。 **CNN**,1989年引入,擅长图像处理,卷积层和池化层提取特征,经典应用包括图像分类和物体检测,如LeNet-5。 **Transformer**,2017年由Google推出,自注意力机制实现并行计算,优化了NLP效率,如机器翻译。 **BERT**,2018年Google的双向预训练模型,通过掩码语言模型改进上下文理解,适用于问答和文本分类。
153 9