傅立叶变换之(一)——欧拉公式

简介: 傅立叶变换之(一)——欧拉公式

前言


这是一个系列笔记,在理解图卷积神经网络的时候需要用到傅立叶变换,傅立叶变换的基础是傅立叶级数公式,而傅立叶级数公式中又包含欧拉公式,这篇文章就是这么来的。


一、复数的概念?


我们把形如 z=a+bi(a、b均为实数)的数称为复数。其中,a 称为实部,b 称为虚部,i 称为虚数单位。当 z 的虚部 b=0 时,则 z 为实数;当 z 的虚部 b≠0 时,实部 a=0 时,常称 z 为纯虚数。

如图所示:德国数学家阿甘得认为在直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并过这两点引平行于坐标轴的直线,它们的交点C就表示复数 。由各点都对应复数的平面叫做“复平面”。

ed95dd714a8d4bf592026fdade41e1ca.png


后来,数学家高斯不仅把复数看作是平面上的点,而且还看作是一种向量。


二、欧拉公式


2-1、虚数单位i


虚数单位i的定义:i定义为-1的开方,即i的平方就是-1。


2-2、欧拉公式的定义

欧拉公式如下


44d9a3dbf7e241299c94ae81c3a5156d.png

欧拉是通过泰勒公式推出欧拉公式的:


b34f3208d65c4aec9d8ff2327b3a49be.png


进一步推导:

d7675e5ab46744e7b5a55d3f5b2a360a.png


2-3、欧拉公式的描述



86963f53623d4fd7b60215c1a3f7cc35.png

图看起来有些抽象?只要看成是我们喜闻乐见的形式a+bi就好了,a对应的是余弦,b对应的是正弦,随着角度的变化而不断变化。即欧拉公式代表的就是单位圆上的点,当然,我么也可以扩展到更一般的情形:



cfba7beaff0e4b98ad23e4237e875b2c.png


参考文章:如何通俗地解释欧拉公式(e^πi+1=0)?

还有,特别鸣谢百度百科的大力支持。


总结


就看到这里吧,我累了,毁灭吧。


目录
打赏
0
0
0
1
73
分享
相关文章
|
11月前
|
数字信号处理中的快速傅里叶变换
数字信号处理中的快速傅里叶变换
104 0
什么是傅里叶变换?傅里叶变换处理图像的原理是什么?
傅里叶变换是一种强大的数学工具,能够将信号在时域与频域之间进行转换,广泛应用于物理学、信号处理、图像处理等领域。它能够将复杂信号分解为多个简单的正弦波,从而便于分析和处理。在图像处理中,傅里叶变换可以用于去噪、锐化和压缩等操作,通过滤波器选择性地保留或去除特定频率的信息,提高图像质量。
|
10月前
快速傅里叶变换
【6月更文挑战第2天】
85 6
|
11月前
|
傅里叶
傅里叶 “【5月更文挑战第23天】”
182 1
傅里叶滤波
傅里叶滤波
43 3
傅里叶变换
傅里叶变换
139 2
时域与频域数据互相转换,傅里叶变换与逆傅里叶变换,matlab程序,时域转频域
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等