MYSQL分页查询时没有用ORDER BY出现数据重复的问题

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: MYSQL分页查询时没有用ORDER BY出现数据重复的问题

背景

产品反馈,用户在使用分页列表时,出现数据重复的问题,查看代码后发现对应的分页SQL并没有使用order by进行排序,但是印象中Mysql的InnoDB引擎会默认按照主键id进行排序,本地测试了一下的确出现了部分数据在不同的页都出现的问题。

于是带着问题去查阅相应的资料,发现原先的认知是错误的。

先说结果

如果没有指定ORDER BY语句,则SQL Server(或任何RDBMS)不保证以特定顺序返回结果。 有些人认为,如果没有指定order by子句,行总是以聚簇索引顺序或物理磁盘顺序返回。 然而,这是不正确的,因为在查询处理期间可以改变行顺序的许多因素,例如并行的HASH连接是更改行顺序的操作符的一个很好的例子。

如果指定ORDER BY语句,SQL Server将对行进行排序,并按请求的顺序返回。 但是,如果该顺序不是确定性的,即可能有重复的值,则在每个具有相同值的组中,由于与上述相同的原因,该顺序是“随机的”。

确保确定性顺序的唯一方法是在ORDER BY子句中包含保证的唯一列或列组(例如主键)。

如果没有定义 order by

MySQL使用SELECT 语句不加ORDER BY默认是如何排序的

那返回的数据不一定是按照主键来排序的,结果可以以任意顺序返回 - 也可能随着时间而改变。

在关系数据库中没有“自然顺序”或类似的东西(至少在我所知道的情况下)。获得可靠排序的唯一方法是显式指定 order by子句,来源when-no-order-by-is-specified-what-order-does-a-query-choose-for-your-record

对于同样的一批数据,在某一个时刻顺序是一样的,随着时间变化,数据会发生变化,那么在进行查询的时候,MySQL 会尝试以尽可能快的方法(MySQL 实际的方法不见得快)返回数据。

由于访问主键、索引大多数情况会快一些(在Cache里)所以返回的数据有可能以主键、索引的顺序输出,这里并不会真的进行排序,主要是由于主键、索引本身就是排序放到内存的,所以连续输出时可能是某种序列。在一些情况下消耗硬盘寻道时间最短的数据会先返回。如果只查询单个表,在特殊的情况下是有规律的。

大致解读一下回答的内容,重新发布一下之前回答过的一个SQL Server类型的问题。

在 SQL 世界中,顺序不是一组数据的固有属性。因此,除非您使用 order by 子句查询您的数据,否则您无法从 RDBMS 保证您的数据将按特定顺序返回 - 甚至以一致的顺序返回。

然后回答你的问题:

•MySQL 根据需要对记录进行排序,但没有任何一致性保证•如果您打算依赖此顺序进行任何操作,则必须使用 order by 指定您想要的顺序。否则做任何其他事情都是在为不受欢迎的意外做好准备。

这是所有 SQL 的属性,而不仅仅是 MySQL。SQL-92 规范中的相关文本是:

http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt

如果未指定 <order by 子句>,则 Q 的行的顺序取决于底层实现。

本文的内容就是如上这些内容了,大致总结一下: 如果在使用没有指定order by,那么基本上依赖于底层实现的,具体排序规则不定,所以排序的顺序也不固定,可能会随着时间发生变化。

在实际工作中,如果有查询列表展示数据的功能和需求,开发前一定要先确定数据排序的规则,这样可以避免后续出现数据查询的排序结果不同的问题。


相关文章:

https://dba.stackexchange.com/questions/6051/what-is-the-default-order-of-records-for-a-select-statement-in-mysql

http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt

https://cloud.tencent.com/developer/article/1493209

 

本篇文章如有帮助到您,请给「翎野君」点个赞,感谢您的支持。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
8月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
6月前
|
SQL 人工智能 关系型数据库
如何实现MySQL百万级数据的查询?
本文探讨了在MySQL中对百万级数据进行排序分页查询的优化策略。面对五百万条数据,传统的浅分页和深分页查询效率较低,尤其深分页因偏移量大导致性能显著下降。通过为排序字段添加索引、使用联合索引、手动回表等方法,有效提升了查询速度。最终建议根据业务需求选择合适方案:浅分页可加单列索引,深分页推荐联合索引或子查询优化,同时结合前端传递最后一条数据ID的方式实现高效翻页。
330 0
|
5月前
|
存储 关系型数据库 MySQL
在CentOS 8.x上安装Percona Xtrabackup工具备份MySQL数据步骤。
以上就是在CentOS8.x上通过Perconaxtabbackup工具对Mysql进行高效率、高可靠性、无锁定影响地实现在线快速全量及增加式数据库资料保存与恢复流程。通过以上流程可以有效地将Mysql相关资料按需求完成定期或不定期地保存与灾难恢复需求。
428 10
|
6月前
|
SQL 存储 缓存
MySQL 如何高效可靠处理持久化数据
本文详细解析了 MySQL 的 SQL 执行流程、crash-safe 机制及性能优化策略。内容涵盖连接器、分析器、优化器、执行器与存储引擎的工作原理,深入探讨 redolog 与 binlog 的两阶段提交机制,并分析日志策略、组提交、脏页刷盘等关键性能优化手段,帮助提升数据库稳定性与执行效率。
165 0
|
9月前
|
关系型数据库 MySQL Linux
在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾
以上就是在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾的步骤。这个过程就像是一场接力赛,数据从MySQL数据库中接力棒一样传递到备份文件,再从备份文件传递到其他服务器,最后再传递回MySQL数据库。这样,即使在灾难发生时,我们也可以快速恢复数据,保证业务的正常运行。
411 28
|
10月前
|
SQL 算法 搜索推荐
mysql 之order by工作流程
本文深入解析了MySQL中`ORDER BY`的排序机制,通过具体示例展示了排序过程及性能优化方法。文章首先分析了基于内存和磁盘的排序方式,包括`sort_buffer_size`的影响以及临时文件的使用场景。接着介绍了`rowid`排序算法,该算法通过减少参与排序的数据量来提升性能,并对比了其与传统排序的区别。此外,还探讨了随机查询`ORDER BY RAND()`的执行流程及其优化策略。最后提到了MySQL 5.6引入的优先队列排序算法,适用于仅需部分有序结果的场景。文章结合`optimizer_trace`工具详细说明了各配置参数对排序行为的影响,为优化查询提供了实用指导。
151 1
mysql 之order by工作流程
|
8月前
|
存储 SQL 缓存
mysql数据引擎有哪些
MySQL 提供了多种存储引擎,每种引擎都有其独特的特点和适用场景。以下是一些常见的 MySQL 存储引擎及其特点:
217 0
|
10月前
|
存储 SQL 关系型数据库
【YashanDB知识库】MySQL迁移至崖山char类型数据自动补空格问题
**简介**:在MySQL迁移到崖山环境时,若字段类型为char(2),而应用存储的数据仅为&#39;0&#39;或&#39;1&#39;,查询时崖山会自动补空格。原因是mysql的sql_mode可能启用了PAD_CHAR_TO_FULL_LENGTH模式,导致保留CHAR类型尾随空格。解决方法是与应用确认数据需求,可将崖山环境中的char类型改为varchar类型以规避补空格问题,适用于所有版本。
|
10月前
|
SQL 关系型数据库 MySQL
【YashanDB知识库】字符集latin1的MySQL中文数据如何迁移到YashanDB
本文探讨了在使用YMP 23.2.1.3迁移MySQL Server字符集为latin1的中文数据至YashanDB时出现乱码的问题。问题根源在于MySQL latin1字符集存放的是实际utf8编码的数据,而YMP尚未支持此类场景。文章提供了两种解决方法:一是通过DBeaver直接迁移表数据;二是将MySQL表数据转换为Insert语句后手动插入YashanDB。同时指出,这两种方法适合单张表迁移,多表迁移可能存在兼容性问题,建议对问题表单独处理。
【YashanDB知识库】字符集latin1的MySQL中文数据如何迁移到YashanDB
|
10月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,

推荐镜像

更多