分别使用SAD匹配,NCC匹配,SSD匹配三种算法提取双目图像的深度信息

简介: 分别使用SAD匹配,NCC匹配,SSD匹配三种算法提取双目图像的深度信息

1.算法仿真效果
matlab2022a仿真结果如下:
fb740eecf5a191228a7b35cca2f5cb8f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
8b94ca4ea128951299cfdefc9f00a700_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
fb1ec5abcd76b441f4d9a07389c3e329_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
image.png

2.算法涉及理论知识概要

   深度学习的蓬勃发展得益于大规模有标注的数据驱动,有监督学习(supervised learning)推动深度模型向着性能越来越高的方向发展。但是,大量的标注数据往往需要付出巨大的人力成本,越来越多的研究开始关注如何在不获取数据标签的条件下提升模型的性能,也就是自监督学习(self-supervised learning)/无监督学习(unsupervised learning)。

   对于立体匹配(stereo matching),或者双目深度估计,像LiDAR这样的设备是极其笨重且昂贵的,它所能收集的只是稀疏的深度信息,而我们需要的是密集的深度图(dense depth map);而基于结构光的设备往往只能在室内场景下进行深度信息标注,在室外场景下难以达到较高的标注质量。因此,自监督学习在立体匹配中得到越来越多的关注。本文主要梳理了近年来自监督学习在深度立体匹配中的应用方法,希望和大家一起探讨学习。

    常用的基于区域的局部匹配准则主要有图像序列中对应像素差的绝对值(SAD, Sum of Absolute Differences),图像序列中对应像素差的平方和(SSD, Sum of Squared Differences),图像的相关性(NCC, Normalized Cross Correlation)等.

 绝对误差和算法(Sum of Absolute Differences,简称SAD算法)。实际上,SAD算法与MAD算法思想几乎是完全一致,只是其相似度测量公式有一点改动(计算的是子图与模板图的L1距离),这里不再赘述。

c06a406e7cefb81495b9c9c651c0d424_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

%NCC
for(i=1+win:1:wL-win)
    for(j=1+win:1:hL-win-dispMax)
        preNCC = 0.0;
        OptimalDisp = dispMin;
        for(dispRange=dispMin:1:dispMax)
            curNCC=0.0; NCCNumerator=0.0; NCCDenominator=0.0; NCCDenominatorRightWindow=0.0; NCCDenominatorLeftWindow=0.0;
            for(x=-win:1:win)
                for(y=-win:1:win)
                   NCCNumerator=NCCNumerator+(imR(i+x,j+y)*imL(i+x,j+y+dispRange));
                   NCCDenominatorRightWindow=NCCDenominatorRightWindow+(imR(i+x,j+y)*imR(i+x,j+y));
                   NCCDenominatorLeftWindow=NCCDenominatorLeftWindow+(imL(i+x,j+y+dispRange)*imL(i+x,j+y+dispRange));
                end
            end
            NCCDenominator=sqrt(NCCDenominatorRightWindow*NCCDenominatorLeftWindow);
            curNCC=NCCNumerator/NCCDenominator;
            if (preNCC < curNCC)
                preNCC = curNCC;
                OptimalDisp = dispRange;
            end
        end
        dispMap_NCC(i,j) = OptimalDisp;
    end
end
相关文章
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
1月前
|
机器学习/深度学习 人工智能 算法
【MM2024】面向 StableDiffusion 的多目标图像编辑算法 VICTORIA
阿里云人工智能平台 PAI 团队与华南理工大学合作在国际多媒体顶级会议 ACM MM2024 上发表 VICTORIA 算法,这是一种面向 StableDiffusion 的多目标图像编辑算法。VICTORIA 通过文本依存关系来修正图像编辑过程中的交叉注意力图,从而确保关系对象的一致性,支持用户通过修改描述性提示一次性编辑多个目标。
|
1月前
|
算法 数据安全/隐私保护
织物图像的配准和拼接算法的MATLAB仿真,对比SIFT,SURF以及KAZE
本项目展示了织物瑕疵检测中的图像拼接技术,使用SIFT、SURF和KAZE三种算法。通过MATLAB2022a实现图像匹配、配准和拼接,最终检测并分类织物瑕疵。SIFT算法在不同尺度和旋转下保持不变性;SURF算法提高速度并保持鲁棒性;KAZE算法使用非线性扩散滤波器构建尺度空间,提供更先进的特征描述。展示视频无水印,代码含注释及操作步骤。
|
2月前
|
算法 数据安全/隐私保护 C++
超级好用的C++实用库之MD5信息摘要算法
超级好用的C++实用库之MD5信息摘要算法
68 0
|
2月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
3月前
|
固态存储 算法 计算机视觉
SSD算法1
8月更文挑战第9天
|
3月前
|
数据采集 机器学习/深度学习 算法
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
|
3月前
|
算法 前端开发 计算机视觉
基于均值坐标(Mean-Value Coordinates)的图像融合算法的优化实现
基于均值坐标(Mean-Value Coordinates)的图像融合算法的优化实现
42 0
|
3月前
|
自然语言处理 并行计算 算法
基于均值坐标(Mean-Value Coordinates)的图像融合算法的具体实现
基于均值坐标(Mean-Value Coordinates)的图像融合算法的具体实现
44 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理