基于模拟退火算法的车间调度优化matlab仿真,输出甘特图

简介: 基于模拟退火算法的车间调度优化matlab仿真,输出甘特图

1.算法仿真效果
matlab2022a仿真结果如下:

3bf8865c14e1a8d3ddb5af4515b2bfb5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
78aed8bd8de20a83daa94c0268e189b9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

优化目标: 最小平均流动时间
粒子数:100 循环代数:500
变异率:0.35 变异变换对数:3
模拟退火初始值:1000 模拟退火终值:0
最小平均流动时间:43 最大完工时间:61 最小间隙时间:60
最优粒子3 1 3 6 4 5 3 2 5 5 4 1 6 2 2 1 4 1 3 6 5 6 6 2 4 5 5 3 2 4 1 6 2 4 1 3

2.算法涉及理论知识概要

    模拟退火算法来源于固体退火原理,是一种基于概率的算法,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
   模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis [1]  等人于1953年提出。1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于Monte-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。模拟退火算法是一种通用的优化算法,理论上算法具有概率的全局优化性能,目前已在工程中得到了广泛应用,诸如VLSI、生产调度、控制工程、机器学习、神经网络、信号处理等领域。

c4fcc75df209c29c421d680ef6247dc4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  甘特图(Gantt chart)又称为横道图、条状图(Bar chart)。其通过条状图来显示项目、进度和其他时间相关的系统进展的内在关系随着时间进展的情况。以提出者亨利·劳伦斯·甘特(Henry Laurence Gantt)先生的名字命名。
   甘特图以图示通过活动列表和时间刻度表示出特定项目的顺序与持续时间。一条线条图,横轴表示时间,纵轴表示项目,线条表示期间计划和实际完成情况。直观表明计划何时进行,进展与要求的对比。便于管理者弄清项目的剩余任务,评估工作进度。

甘特图是以作业排序为目的,将活动与时间联系起来的最早尝试的工具之一,帮助企业描述工作中心、超时工作等资源的使用。
甘特图包含以下三个含义:
1、以图形或表格的形式显示活动;
2、通用的显示进度的方法;
3、构造时含日历天和持续时间,不将周末节假算在进度内。
简单、醒目、便于编制,在管理中广泛应用。
甘特图按内容不同,分为计划图表、负荷图表、机器闲置图表、人员闲置图表和进度表五种形式。

3.MATLAB核心程序

                 2     3     5     6     1     4
                 3     4     6     1     2     5
                 2     1     3     4     5     6
                 3     2     5     6     1     4
                 2     4     6     1     5     3];%job-shop机器约束矩阵;
             
restrictmatrixT=[1     3     6    7      3     6
                 8     5     10   10     10    4
                 5     4     8     9     1     7
                 5     5     5     3     8     9
                 9     3     5     4     3     1
                 3     3     9     10    4     1];%job-shop时间约束矩阵;
             
%===============PSO算法==========================
swarminit=cell(1,swarminitNum);
swarminitLong=sum(MM(2,:));          %所有工序数即粒子长度;
for i=1:swarminitNum,
    swarminit{i}=randomparticle(MM) ;
end                                  %随机生成初始粒子群体
[popu,s] = size(swarminit); 
trace = ones(1,gen); 
trace(1) = 10000; % 初始全局最佳适应度设为足够大 
for i = 1:s,
    bestfit(i) = 10000; % 初始个体历史最佳适应度设为足够大 
end
bestpar = swarminit; % 个体历史最佳粒子初始化
for u=1:swarminitNum,
    fitlist=[0]; 
end
T=initT;
for step = 1:gen,
    step
    for q=1:swarminitNum,
            fitlist(q)=timedecode(swarminit{q},restrictmatrixM,restrictmatrixT,machineNum)  ;     
    end              % 计算当前粒子群每个粒子的适应度
    [minval,sub] = min(fitlist); % 求得这代粒子的适应度最小值及其下标 
    if(trace(step) > minval)  ,
         trace(step) = minval; 
         bestparticle = swarminit{sub}; 
    end
    if(step~= gen) ,
        trace(step + 1) = trace(step); % 全局最佳适应度及最佳粒子调整 
    end
    T=0.97*T;
    for i = 1:s,
        tt=fitlist(i)-bestfit(i);
        if(tt<0)|(min(1,exp(-tt/T))>=rand(1,1));
           bestfit(i) = fitlist(i); 
           bestpar{i} = swarminit{i}; 
       end 
   end % 个体历史最佳粒子及适应度调整 ;
   for j = 1:s,
       if rand(1,1)<w1,
          bestparticle1=bianyi(bestparticle,changeNum,swarminitLong);
       else
           bestparticle1=bestparticle;
       end               %粒子变异;
       l1=1000;
       l2=1;
       l3=1000;
       l4=1;
       while (l1-l2)>swarminitLong,
           m=fix(swarminitLong*rand(1,1));
           n=fix(swarminitLong*rand(1,1));
           l1=max(m,n)+1;
           l2=min(m,n)+1;
       end
       while (l3-l4)>swarminitLong,
           m1=fix(swarminitLong*rand(1,1));
           n1=fix(swarminitLong*rand(1,1));
           l3=max(m1,n1)+1;
           l4=min(m1,n1)+1;
       end
       swarminit{j}=cross(bestpar{j},swarminit{j},l2,l1);
       swarminit{j}=cross(bestparticle1,swarminit{j},l4,l3);%粒子交叉;
   end 
 
 
error(step)=min(fitlist);
 
end
gant(bestparticle,swarminitLong,restrictmatrixM,restrictmatrixT,b)
figure;
plot(error);
相关文章
|
27天前
|
算法 安全 Java
Java线程调度揭秘:从算法到策略,让你面试稳赢!
在社招面试中,关于线程调度和同步的相关问题常常让人感到棘手。今天,我们将深入解析Java中的线程调度算法、调度策略,探讨线程调度器、时间分片的工作原理,并带你了解常见的线程同步方法。让我们一起破解这些面试难题,提升你的Java并发编程技能!
68 16
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
3月前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
3月前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
3月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
98 4
|
3月前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
3月前
|
算法 大数据 Linux
深入理解操作系统之进程调度算法
【10月更文挑战第24天】本文旨在通过浅显易懂的语言,带领读者深入了解操作系统中的进程调度算法。我们将从进程的基本概念出发,逐步解析进程调度的目的、重要性以及常见的几种调度算法。文章将通过比喻和实例,使复杂的技术内容变得生动有趣,帮助读者建立对操作系统进程调度机制的清晰认识。最后,我们还将探讨这些调度算法在现代操作系统中的应用和发展趋势。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15

热门文章

最新文章