Android C++系列:Linux进程(二)

简介: 用fork创建子进程后执行的是和父进程相同的程序(但有可能执行不同的代码分支), 子进程往往要调用一种exec函数以执行另一个程序。当进程调用一种exec函数时,该进程的 用户空间代码和数据完全被新程序替换,从新程序的启动例程开始执行。调用exec并不创建 新进程,所以调用exec前后该进程的id并未改变。

image.png


1. fork


#include <unistd.h> 
pid_t fork(void);


子进程复制父进程的0到3g空间和父进程内核中的PCB,但id号不同。 fork调用一次返回两次


  • 父进程中返回子进程ID
  • 子进程中返回0
  • 读时共享,写时复制


#include <sys/types.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <stdlib.h>
int main(void) {
  pid_t pid; 
  char *message; 
  int n;
  pid = fork(); 
  if (pid < 0) {
    perror("fork failed");
    exit(1); 
  }
  if (pid == 0) {
    message = "This is the child\n"; 
    n = 6;
  } else {
    message = "This is the parent\n"; 
    n = 3;
  }
  for(; n > 0; n--) {
    printf(message);
    sleep(1); 
  }
  return 0; 
 }


image.png


1.1 进程相关函数


#include <sys/types.h> #include <unistd.h>
pid_t getpid(void); //返回调用进程的PID号
pid_t getppid(void); //返回调用进程父进程的PID号


getpid/gteppid


#include <unistd.h> 
#include <sys/types.h>
uid_t getuid(void); //返回实际用户ID 
uid_t geteuid(void); //返回有效用户ID


getuid


#include <unistd.h> 
#include <sys/types.h>
gid_t getgid(void); //返回实际用户组ID 
gid_t getegid(void); //返回有效用户组ID


getgid


vfork


  • 用于fork后马上调用exec函数
  • 父子进程,共用同一地址空间,子进程如果没有马上exec而是修改了父进程出得到的变量值,此修改会在父进程中生效
  • 设计初衷,提高系统效率,减少不必要的开销
  • 现在fork已经具备读时共享写时复制机制,vfork逐渐废弃


2. exec族


用fork创建子进程后执行的是和父进程相同的程序(但有可能执行不同的代码分支), 子进程往往要调用一种exec函数以执行另一个程序。当进程调用一种exec函数时,该进程的 用户空间代码和数据完全被新程序替换,从新程序的启动例程开始执行。调用exec并不创建 新进程,所以调用exec前后该进程的id并未改变。


其实有六种以exec开头的函数,统称exec函数:


#include <unistd.h>
int execl(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);
int execle(const char *path, const char *arg, ..., char *const envp[]); 
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execve(const char *path, char *const argv[], char *const envp[]);


这些函数如果调用成功则加载新的程序从启动代码开始执行,不再返回,如果调用出错 则返回-1,所以exec函数只有出错的返回值而没有成功的返回值。


这些函数原型看起来很容易混,但只要掌握了规律就很好记。不带字母p(表示 path)的exec函数第一个参数必须是程序的相对路径或绝对路径,例如“/bin/ls”或“./ a.out”,而不能是“ls”或“a.out”。对于带字母p的函数:


如果参数中包含/,则将其视为路径名。 否则视为不带路径的程序名,在PATH环境变量的目录列表中搜索这个程序。 带有字母l(表示list)的exec函数要求将新程序的每个命令行参数都当作一个参数传


给它,命令行参数的个数是可变的,因此函数原型中有...,...中的最后一个可变参数应该是 NULL,起sentinel的作用。对于带有字母v(表示vector)的函数,则应该先构造一个指向 各参数的指针数组,然后将该数组的首地址当作参数传给它,数组中的最后一个指针也应该 是NULL,就像main函数的argv参数或者环境变量表一样。


对于以e(表示environment)结尾的exec函数,可以把一份新的环境变量表传给它,其 他exec函数仍使用当前的环境变量表执行新程序。


exec调用举例如下:


char *const ps_argv[] ={"ps", "-o", "pid,ppid,pgrp,session,tpgid,comm", NULL}; 
char *const ps_envp[] ={"PATH=/bin:/usr/bin", "TERM=console", NULL}; 
execl("/bin/ps", "ps", "-o", "pid,ppid,pgrp,session,tpgid,comm", NULL); 
execv("/bin/ps", ps_argv);
execle("/bin/ps", "ps", "-o", "pid,ppid,pgrp,session,tpgid,comm", NULL, ps_envp); execve("/bin/ps", ps_argv, ps_envp);
execlp("ps", "ps", "-o", "pid,ppid,pgrp,session,tpgid,comm", NULL);
execvp("ps", ps_argv);


事实上,只有execve是真正的系统调用,其它五个函数最终都调用execve,所以execve 在man手册第2节,其它函数在man手册第3节。这些函数之间的关系如下图所示。


image.png


一个完整的例子:


#include <unistd.h> 
#include <stdlib.h>
int main(void) {
  execlp("ps", "ps", "-o", "pid,ppid,pgrp,session,tpgid,comm", NULL); 
  perror("exec ps");
  exit(1);
}


由于exec函数只有错误返回值,只要返回了一定是出错了,所以不需要判断它的 返回值,直接在后面调用perror即可。注意在调用execlp时传了两个“ps”参数,第一 个“ps”是程序名,execlp函数要在PATH环境变量中找到这个程序并执行它,而第二 个“ps”是第一个命令行参数,execlp函数并不关心它的值,只是简单地把它传给ps程 序,ps程序可以通过main函数的argv[0]取到这个参数。


调用exec后,原来打开的文件描述符仍然是打开的。利用这一点可以实现I/O重定向。 先看一个简单的例子,把标准输入转成大写然后打印到标准输出:


例 upper


/* upper.c */ #include <stdio.h>
int main(void) {
  int ch;
  while((ch = getchar()) != EOF) {
    putchar(toupper(ch)); 
  }
  return 0; 
}


例 wrapper


/* wrapper.c */ 
#include <unistd.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <fcntl.h>
int main(int argc, char *argv[]) {
  int fd;
  if (argc != 2) {
    fputs("usage: wrapper file\n", stderr);
    exit(1); 
  }
  fd = open(argv[1], O_RDONLY); 
  if(fd<0) {
    perror("open");
    exit(1); 
  }
  dup2(fd, STDIN_FILENO); 
  close(fd);
  execl("./upper", "upper", NULL); 
  perror("exec ./upper");
  exit(1); 
}


wrapper程序将命令行参数当作文件名打开,将标准输入重定向到这个文件,然后调用 exec执行upper程序,这时原来打开的文件描述符仍然是打开的,upper程序只负责从标准输 入读入字符转成大写,并不关心标准输入对应的是文件还是终端。运行结果如下:


  • l 命令行参数列表
  • p 搜素file时使用path变量
  • v 使用命令行参数数组
  • e 使用环境变量数组,不使用进程原有的环境变量,设置新加载程序运行的环境变量


3. 总结


本文介绍了进程原语:fork和exec。 fork调用一次返回两次:父进程中返回子进程ID ;子进程中返回0;读时共享,写时复制。

目录
相关文章
|
3天前
|
API Android开发
Android P 性能优化:创建APP进程白名单,杀死白名单之外的进程
本文介绍了在Android P系统中通过创建应用进程白名单并杀死白名单之外的进程来优化性能的方法,包括设置权限、获取运行中的APP列表、配置白名单以及在应用启动时杀死非白名单进程的代码实现。
15 1
|
2月前
|
运维 关系型数据库 MySQL
掌握taskset:优化你的Linux进程,提升系统性能
在多核处理器成为现代计算标准的今天,运维人员和性能调优人员面临着如何有效利用这些处理能力的挑战。优化进程运行的位置不仅可以提高性能,还能更好地管理和分配系统资源。 其中,taskset命令是一个强大的工具,它允许管理员将进程绑定到特定的CPU核心,减少上下文切换的开销,从而提升整体效率。
掌握taskset:优化你的Linux进程,提升系统性能
|
2月前
|
弹性计算 Linux 区块链
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
46 4
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
|
23天前
|
Android开发 开发者 Kotlin
Android 多进程情况下判断应用是否处于前台或者后台
本文介绍在多进程环境下判断Android应用前后台状态的方法。通过`ActivityManager`和服务信息`RunningAppProcessInfo`可有效检测应用状态,优化资源使用。提供Kotlin代码示例,帮助开发者轻松集成。
120 8
|
30天前
|
算法 Linux 调度
探索进程调度:Linux内核中的完全公平调度器
【8月更文挑战第2天】在操作系统的心脏——内核中,进程调度算法扮演着至关重要的角色。本文将深入探讨Linux内核中的完全公平调度器(Completely Fair Scheduler, CFS),一个旨在提供公平时间分配给所有进程的调度器。我们将通过代码示例,理解CFS如何管理运行队列、选择下一个运行进程以及如何对实时负载进行响应。文章将揭示CFS的设计哲学,并展示其如何在现代多任务计算环境中实现高效的资源分配。
|
2月前
|
Java Android开发 C++
🚀Android NDK开发实战!Java与C++混合编程,打造极致性能体验!📊
【7月更文挑战第28天】在 Android 开发中, NDK 让 Java 与 C++ 混合编程成为可能, 从而提升应用性能。**为何选 NDK?** C++ 在执行效率与内存管理上优于 Java, 特别适合高性能需求场景。**环境搭建** 需 Android Studio 和 NDK, 工具如 CMake。**JNI** 构建 Java-C++ 交互, 通过声明 `native` 方法并在 C++ 中实现。**实战** 示例: 使用 C++ 计算斐波那契数列以提高效率。**总结** 混合编程增强性能, 但增加复杂性, 使用前需谨慎评估。
74 4
|
13天前
|
JSON Android开发 C++
Android c++ core guideline checker 应用
Android c++ core guideline checker 应用
|
16天前
|
JSON Android开发 数据格式
Android c++ core guideline checker 应用问题之JSON compilation database的定义如何解决
Android c++ core guideline checker 应用问题之JSON compilation database的定义如何解决
|
16天前
|
IDE 开发工具 Android开发
Android c++ core guideline checker 应用问题之clang-tidy 检查后发现的问题如何解决
Android c++ core guideline checker 应用问题之clang-tidy 检查后发现的问题如何解决
|
2月前
|
存储 缓存 安全
【Linux】冯诺依曼体系结构与操作系统及其进程
【Linux】冯诺依曼体系结构与操作系统及其进程
135 1

热门文章

最新文章

下一篇
云函数