Android C++系列:Linux进程(二)

简介: 用fork创建子进程后执行的是和父进程相同的程序(但有可能执行不同的代码分支), 子进程往往要调用一种exec函数以执行另一个程序。当进程调用一种exec函数时,该进程的 用户空间代码和数据完全被新程序替换,从新程序的启动例程开始执行。调用exec并不创建 新进程,所以调用exec前后该进程的id并未改变。

image.png


1. fork


#include <unistd.h> 
pid_t fork(void);


子进程复制父进程的0到3g空间和父进程内核中的PCB,但id号不同。 fork调用一次返回两次


  • 父进程中返回子进程ID
  • 子进程中返回0
  • 读时共享,写时复制


#include <sys/types.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <stdlib.h>
int main(void) {
  pid_t pid; 
  char *message; 
  int n;
  pid = fork(); 
  if (pid < 0) {
    perror("fork failed");
    exit(1); 
  }
  if (pid == 0) {
    message = "This is the child\n"; 
    n = 6;
  } else {
    message = "This is the parent\n"; 
    n = 3;
  }
  for(; n > 0; n--) {
    printf(message);
    sleep(1); 
  }
  return 0; 
 }


image.png


1.1 进程相关函数


#include <sys/types.h> #include <unistd.h>
pid_t getpid(void); //返回调用进程的PID号
pid_t getppid(void); //返回调用进程父进程的PID号


getpid/gteppid


#include <unistd.h> 
#include <sys/types.h>
uid_t getuid(void); //返回实际用户ID 
uid_t geteuid(void); //返回有效用户ID


getuid


#include <unistd.h> 
#include <sys/types.h>
gid_t getgid(void); //返回实际用户组ID 
gid_t getegid(void); //返回有效用户组ID


getgid


vfork


  • 用于fork后马上调用exec函数
  • 父子进程,共用同一地址空间,子进程如果没有马上exec而是修改了父进程出得到的变量值,此修改会在父进程中生效
  • 设计初衷,提高系统效率,减少不必要的开销
  • 现在fork已经具备读时共享写时复制机制,vfork逐渐废弃


2. exec族


用fork创建子进程后执行的是和父进程相同的程序(但有可能执行不同的代码分支), 子进程往往要调用一种exec函数以执行另一个程序。当进程调用一种exec函数时,该进程的 用户空间代码和数据完全被新程序替换,从新程序的启动例程开始执行。调用exec并不创建 新进程,所以调用exec前后该进程的id并未改变。


其实有六种以exec开头的函数,统称exec函数:


#include <unistd.h>
int execl(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);
int execle(const char *path, const char *arg, ..., char *const envp[]); 
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execve(const char *path, char *const argv[], char *const envp[]);


这些函数如果调用成功则加载新的程序从启动代码开始执行,不再返回,如果调用出错 则返回-1,所以exec函数只有出错的返回值而没有成功的返回值。


这些函数原型看起来很容易混,但只要掌握了规律就很好记。不带字母p(表示 path)的exec函数第一个参数必须是程序的相对路径或绝对路径,例如“/bin/ls”或“./ a.out”,而不能是“ls”或“a.out”。对于带字母p的函数:


如果参数中包含/,则将其视为路径名。 否则视为不带路径的程序名,在PATH环境变量的目录列表中搜索这个程序。 带有字母l(表示list)的exec函数要求将新程序的每个命令行参数都当作一个参数传


给它,命令行参数的个数是可变的,因此函数原型中有...,...中的最后一个可变参数应该是 NULL,起sentinel的作用。对于带有字母v(表示vector)的函数,则应该先构造一个指向 各参数的指针数组,然后将该数组的首地址当作参数传给它,数组中的最后一个指针也应该 是NULL,就像main函数的argv参数或者环境变量表一样。


对于以e(表示environment)结尾的exec函数,可以把一份新的环境变量表传给它,其 他exec函数仍使用当前的环境变量表执行新程序。


exec调用举例如下:


char *const ps_argv[] ={"ps", "-o", "pid,ppid,pgrp,session,tpgid,comm", NULL}; 
char *const ps_envp[] ={"PATH=/bin:/usr/bin", "TERM=console", NULL}; 
execl("/bin/ps", "ps", "-o", "pid,ppid,pgrp,session,tpgid,comm", NULL); 
execv("/bin/ps", ps_argv);
execle("/bin/ps", "ps", "-o", "pid,ppid,pgrp,session,tpgid,comm", NULL, ps_envp); execve("/bin/ps", ps_argv, ps_envp);
execlp("ps", "ps", "-o", "pid,ppid,pgrp,session,tpgid,comm", NULL);
execvp("ps", ps_argv);


事实上,只有execve是真正的系统调用,其它五个函数最终都调用execve,所以execve 在man手册第2节,其它函数在man手册第3节。这些函数之间的关系如下图所示。


image.png


一个完整的例子:


#include <unistd.h> 
#include <stdlib.h>
int main(void) {
  execlp("ps", "ps", "-o", "pid,ppid,pgrp,session,tpgid,comm", NULL); 
  perror("exec ps");
  exit(1);
}


由于exec函数只有错误返回值,只要返回了一定是出错了,所以不需要判断它的 返回值,直接在后面调用perror即可。注意在调用execlp时传了两个“ps”参数,第一 个“ps”是程序名,execlp函数要在PATH环境变量中找到这个程序并执行它,而第二 个“ps”是第一个命令行参数,execlp函数并不关心它的值,只是简单地把它传给ps程 序,ps程序可以通过main函数的argv[0]取到这个参数。


调用exec后,原来打开的文件描述符仍然是打开的。利用这一点可以实现I/O重定向。 先看一个简单的例子,把标准输入转成大写然后打印到标准输出:


例 upper


/* upper.c */ #include <stdio.h>
int main(void) {
  int ch;
  while((ch = getchar()) != EOF) {
    putchar(toupper(ch)); 
  }
  return 0; 
}


例 wrapper


/* wrapper.c */ 
#include <unistd.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <fcntl.h>
int main(int argc, char *argv[]) {
  int fd;
  if (argc != 2) {
    fputs("usage: wrapper file\n", stderr);
    exit(1); 
  }
  fd = open(argv[1], O_RDONLY); 
  if(fd<0) {
    perror("open");
    exit(1); 
  }
  dup2(fd, STDIN_FILENO); 
  close(fd);
  execl("./upper", "upper", NULL); 
  perror("exec ./upper");
  exit(1); 
}


wrapper程序将命令行参数当作文件名打开,将标准输入重定向到这个文件,然后调用 exec执行upper程序,这时原来打开的文件描述符仍然是打开的,upper程序只负责从标准输 入读入字符转成大写,并不关心标准输入对应的是文件还是终端。运行结果如下:


  • l 命令行参数列表
  • p 搜素file时使用path变量
  • v 使用命令行参数数组
  • e 使用环境变量数组,不使用进程原有的环境变量,设置新加载程序运行的环境变量


3. 总结


本文介绍了进程原语:fork和exec。 fork调用一次返回两次:父进程中返回子进程ID ;子进程中返回0;读时共享,写时复制。

目录
相关文章
|
7月前
|
并行计算 Linux
Linux内核中的线程和进程实现详解
了解进程和线程如何工作,可以帮助我们更好地编写程序,充分利用多核CPU,实现并行计算,提高系统的响应速度和计算效能。记住,适当平衡进程和线程的使用,既要拥有独立空间的'兄弟',也需要在'家庭'中分享和并行的成员。对于这个世界,现在,你应该有一个全新的认识。
282 67
|
6月前
|
Web App开发 Linux 程序员
获取和理解Linux进程以及其PID的基础知识。
总的来说,理解Linux进程及其PID需要我们明白,进程就如同汽车,负责执行任务,而PID则是独特的车牌号,为我们提供了管理的便利。知道这个,我们就可以更好地理解和操作Linux系统,甚至通过对进程的有效管理,让系统运行得更加顺畅。
200 16
|
6月前
|
Unix Linux
对于Linux的进程概念以及进程状态的理解和解析
现在,我们已经了解了Linux进程的基础知识和进程状态的理解了。这就像我们理解了城市中行人的行走和行为模式!希望这个形象的例子能帮助我们更好地理解这个重要的概念,并在实际应用中发挥作用。
139 20
|
5月前
|
监控 Shell Linux
Linux进程控制(详细讲解)
进程等待是系统通过调用特定的接口(如waitwaitpid)来实现的。来进行对子进程状态检测与回收的功能。
123 0
|
5月前
|
存储 负载均衡 算法
Linux2.6内核进程调度队列
本篇文章是Linux进程系列中的最后一篇文章,本来是想放在上一篇文章的结尾的,但是想了想还是单独写一篇文章吧,虽然说这部分内容是比较难的,所有一般来说是简单的提及带过的,但是为了让大家对进程有更深的理解与认识,还是看了一些别人的文章,然后学习了学习,然后对此做了总结,尽可能详细的介绍明白。最后推荐一篇文章Linux的进程优先级 NI 和 PR - 简书。
180 0
|
5月前
|
存储 Linux Shell
Linux进程概念-详细版(二)
在Linux进程概念-详细版(一)中我们解释了什么是进程,以及进程的各种状态,已经对进程有了一定的认识,那么这篇文章将会继续补全上篇文章剩余没有说到的,进程优先级,环境变量,程序地址空间,进程地址空间,以及调度队列。
126 0
|
5月前
|
Linux 调度 C语言
Linux进程概念-详细版(一)
子进程与父进程代码共享,其子进程直接用父进程的代码,其自己本身无代码,所以子进程无法改动代码,平时所说的修改是修改的数据。为什么要创建子进程:为了让其父子进程执行不同的代码块。子进程的数据相对于父进程是会进行写时拷贝(COW)。
150 0
|
8月前
|
Linux 数据库 Perl
【YashanDB 知识库】如何避免 yasdb 进程被 Linux OOM Killer 杀掉
本文来自YashanDB官网,探讨Linux系统中OOM Killer对数据库服务器的影响及解决方法。当内存接近耗尽时,OOM Killer会杀死占用最多内存的进程,这可能导致数据库主进程被误杀。为避免此问题,可采取两种方法:一是在OS层面关闭OOM Killer,通过修改`/etc/sysctl.conf`文件并重启生效;二是豁免数据库进程,由数据库实例用户借助`sudo`权限调整`oom_score_adj`值。这些措施有助于保护数据库进程免受系统内存管理机制的影响。
|
8月前
|
Linux Shell
Linux 进程前台后台切换与作业控制
进程前台/后台切换及作业控制简介: 在 Shell 中,启动的程序默认为前台进程,会占用终端直到执行完毕。例如,执行 `./shella.sh` 时,终端会被占用。为避免不便,可将命令放到后台运行,如 `./shella.sh &`,此时终端命令行立即返回,可继续输入其他命令。 常用作业控制命令: - `fg %1`:将后台作业切换到前台。 - `Ctrl + Z`:暂停前台作业并放到后台。 - `bg %1`:让暂停的后台作业继续执行。 - `kill %1`:终止后台作业。 优先级调整:
623 5
|
运维 关系型数据库 MySQL
掌握taskset:优化你的Linux进程,提升系统性能
在多核处理器成为现代计算标准的今天,运维人员和性能调优人员面临着如何有效利用这些处理能力的挑战。优化进程运行的位置不仅可以提高性能,还能更好地管理和分配系统资源。 其中,taskset命令是一个强大的工具,它允许管理员将进程绑定到特定的CPU核心,减少上下文切换的开销,从而提升整体效率。
掌握taskset:优化你的Linux进程,提升系统性能

热门文章

最新文章

下一篇
oss云网关配置