《Spark大数据处理:技术、应用与性能优化》——1.3 Spark架构

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

本节书摘来自华章计算机《Spark大数据处理:技术、应用与性能优化》一书中的第1章,第1.3节,作者:高彦杰 更多章节内容可以访问云栖社区“华章计算机”公众号查看。

1.3 Spark架构

从上文介绍可以看出,Spark是整个BDAS的核心。生态系统中的各个组件通过Spark来实现对分布式并行任务处理的程序支持。
1.Spark的代码结构
图1-3展示了Spark-1.0的代码结构和代码量(不包含Test和Sample代码),读者可以通过代码架构对 Spark的整体组件有一个初步了解,正是这些代码模块构成了Spark架构中的各个组件,同时读者可以通过代码模块的脉络阅读与剖析源码,这对于了解Spark的架构和实现细节都是很有帮助的。
下面对图1-3中的各模块进行简要介绍。
scheduler:文件夹中含有负责整体的Spark应用、任务调度的代码。
broadcast:含有Broadcast(广播变量)的实现代码,API中是Java和Python API的实现。


<a href=https://yqfile.alicdn.com/c35a2a9b4eaba833f0c5434b81d38830ce8601d1.png
" >
  • deploy:含有Spark部署与启动运行的代码。
  • common:不是一个文件夹,而是代表Spark通用的类和逻辑实现,有5000行代码。
  • metrics:是运行时状态监控逻辑代码,Executor中含有Worker节点负责计算的逻辑代码。
  • partial:含有近似评估代码。
  • network:含有集群通信模块代码。
  • serializer:含有序列化模块的代码。
    storage:含有存储模块的代码。
  • ui:含有监控界面的代码逻辑。其他的代码模块分别是对Spark生态系统中其他组件的实现。
  • streaming:是Spark Streaming的实现代码。
    YARN:是Spark on YARN的部分实现代码。
  • graphx:含有GraphX实现代码。
    interpreter:代码交互式Shell的代码量为3300行。
  • mllib:代表MLlib算法实现的代码量。
    sql代表Spark SQL的代码量。

2.Spark的架构
Spark架构采用了分布式计算中的Master-Slave模型。Master是对应集群中的含有Master进程的节点,Slave是集群中含有Worker进程的节点。Master作为整个集群的控制器,负责整个集群的正常运行;Worker相当于是计算节点,接收主节点命令与进行状态汇报;Executor负责任务的执行;Client作为用户的客户端负责提交应用,Driver负责控制一个应用的执行,如图1-4所示。


96834c7fc31133b5fc1b612029fca988f7759e65

Spark集群部署后,需要在主节点和从节点分别启动Master进程和Worker进程,对整个集群进行控制。在一个Spark应用的执行过程中,Driver和Worker是两个重要角色。Driver 程序是应用逻辑执行的起点,负责作业的调度,即Task任务的分发,而多个Worker用来管理计算节点和创建Executor并行处理任务。在执行阶段,Driver会将Task和Task所依赖的file和jar序列化后传递给对应的Worker机器,同时Executor对相应数据分区的任务进行处理。
下面详细介绍Spark的架构中的基本组件。

  • ClusterManager:在Standalone模式中即为Master(主节点),控制整个集群,监控Worker。在YARN模式中为资源管理器。
  • Worker:从节点,负责控制计算节点,启动Executor或Driver。在YARN模式中为NodeManager,负责计算节点的控制。
  • Driver:运行Application的main()函数并创建SparkContext。
  • Executor:执行器,在worker node上执行任务的组件、用于启动线程池运行任务。每个Application拥有独立的一组Executors。
  • SparkContext:整个应用的上下文,控制应用的生命周期。
  • RDD:Spark的基本计算单元,一组RDD可形成执行的有向无环图RDD Graph。
  • DAG Scheduler:根据作业(Job)构建基于Stage的DAG,并提交Stage给TaskScheduler。
  • TaskScheduler:将任务(Task)分发给Executor执行。
  • SparkEnv:线程级别的上下文,存储运行时的重要组件的引用。
  • SparkEnv内创建并包含如下一些重要组件的引用。
  • MapOutPutTracker:负责Shuffle元信息的存储。
  • BroadcastManager:负责广播变量的控制与元信息的存储。
  • BlockManager:负责存储管理、创建和查找块。
  • MetricsSystem:监控运行时性能指标信息。
  • SparkConf:负责存储配置信息。

Spark的整体流程为:Client 提交应用,Master找到一个Worker启动Driver,Driver向Master或者资源管理器申请资源,之后将应用转化为RDD Graph,再由DAGScheduler将RDD Graph转化为Stage的有向无环图提交给TaskScheduler,由TaskScheduler提交任务给Executor执行。在任务执行的过程中,其他组件协同工作,确保整个应用顺利执行。
3.Spark运行逻辑
如图1-5所示,在Spark应用中,整个执行流程在逻辑上会形成有向无环图(DAG)。Action算子触发之后,将所有累积的算子形成一个有向无环图,然后由调度器调度该图上的任务进行运算。Spark的调度方式与MapReduce有所不同。Spark根据RDD之间不同的依赖关系切分形成不同的阶段(Stage),一个阶段包含一系列函数执行流水线。图中的A、B、C、D、E、F分别代表不同的RDD,RDD内的方框代表分区。数据从HDFS输入Spark,形成RDD A和RDD C,RDD C上执行map操作,转换为RDD D, RDD B和 RDD E执行join操作,转换为F,而在B和E连接转化为F的过程中又会执行Shuffle,最后RDD F 通过函数saveAsSequenceFile输出并保存到HDFS中。


<a href=https://yqfile.alicdn.com/6ad8398c666ce8066975b325095e32b0c3f713be.png
" >
相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
4月前
|
人工智能 自然语言处理 开发工具
统一多模态 Transformer 架构在跨模态表示学习中的应用与优化
本文介绍统一多模态 Transformer(UMT)在跨模态表示学习中的应用与优化,涵盖模型架构、实现细节与实验效果,探讨其在图文检索、图像生成等任务中的卓越性能。
统一多模态 Transformer 架构在跨模态表示学习中的应用与优化
|
3月前
|
监控 Java API
Spring Boot 3.2 结合 Spring Cloud 微服务架构实操指南 现代分布式应用系统构建实战教程
Spring Boot 3.2 + Spring Cloud 2023.0 微服务架构实践摘要 本文基于Spring Boot 3.2.5和Spring Cloud 2023.0.1最新稳定版本,演示现代微服务架构的构建过程。主要内容包括: 技术栈选择:采用Spring Cloud Netflix Eureka 4.1.0作为服务注册中心,Resilience4j 2.1.0替代Hystrix实现熔断机制,配合OpenFeign和Gateway等组件。 核心实操步骤: 搭建Eureka注册中心服务 构建商品
624 3
|
4月前
|
存储 SQL 监控
数据中台架构解析:湖仓一体的实战设计
在数据量激增的数字化时代,企业面临数据分散、使用效率低等问题。数据中台作为统一管理与应用数据的核心平台,结合湖仓一体架构,打通数据壁垒,实现高效流转与分析。本文详解湖仓一体的设计与落地实践,助力企业构建统一、灵活的数据底座,驱动业务决策与创新。
|
1月前
|
人工智能 JavaScript 前端开发
GenSX (不一样的AI应用框架)架构学习指南
GenSX 是一个基于 TypeScript 的函数式 AI 工作流框架,以“函数组合替代图编排”为核心理念。它通过纯函数组件、自动追踪与断点恢复等特性,让开发者用自然代码构建可追溯、易测试的 LLM 应用。支持多模型集成与插件化扩展,兼具灵活性与工程化优势。
165 6
|
5月前
|
存储 编解码 Serverless
Serverless架构下的OSS应用:函数计算FC自动处理图片/视频转码(演示水印添加+缩略图生成流水线)
本文介绍基于阿里云函数计算(FC)和对象存储(OSS)构建Serverless媒体处理流水线,解决传统方案资源利用率低、运维复杂、成本高等问题。通过事件驱动机制实现图片水印添加、多规格缩略图生成及视频转码优化,支持毫秒级弹性伸缩与精确计费,提升处理效率并降低成本,适用于高并发媒体处理场景。
294 0
|
2月前
|
人工智能 Cloud Native 中间件
划重点|云栖大会「AI 原生应用架构论坛」看点梳理
本场论坛将系统性阐述 AI 原生应用架构的新范式、演进趋势与技术突破,并分享来自真实生产环境下的一线实践经验与思考。
|
1月前
|
分布式计算 Kubernetes 调度
Kubeflow-Spark-Operator-架构学习指南
本指南系统解析 Spark Operator 架构,涵盖 Kubebuilder 开发、控制器设计与云原生集成。通过四阶段学习路径,助你从部署到贡献,掌握 Kubernetes Operator 核心原理与实战技能。
124 0
|
2月前
|
机器学习/深度学习 人工智能 vr&ar
H4H:面向AR/VR应用的NPU-CIM异构系统混合卷积-Transformer架构搜索——论文阅读
H4H是一种面向AR/VR应用的混合卷积-Transformer架构,基于NPU-CIM异构系统,通过神经架构搜索实现高效模型设计。该架构结合卷积神经网络(CNN)的局部特征提取与视觉Transformer(ViT)的全局信息处理能力,提升模型性能与效率。通过两阶段增量训练策略,缓解混合模型训练中的梯度冲突问题,并利用异构计算资源优化推理延迟与能耗。实验表明,H4H在相同准确率下显著降低延迟和功耗,为AR/VR设备上的边缘AI推理提供了高效解决方案。
358 0
|
1月前
|
机器学习/深度学习 自然语言处理 算法
48_动态架构模型:NAS在LLM中的应用
大型语言模型(LLM)在自然语言处理领域的突破性进展,很大程度上归功于其庞大的参数量和复杂的网络架构。然而,随着模型规模的不断增长,计算资源消耗、推理延迟和部署成本等问题日益凸显。如何在保持模型性能的同时,优化模型架构以提高效率,成为2025年大模型研究的核心方向之一。神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的网络设计方法,正在为这一挑战提供创新性解决方案。本文将深入探讨NAS技术如何应用于LLM的架构优化,特别是在层数与维度调整方面的最新进展,并通过代码实现展示简单的NAS实验。
|
2月前
|
存储 分布式计算 资源调度
【赵渝强老师】阿里云大数据MaxCompute的体系架构
阿里云MaxCompute是快速、全托管的EB级数据仓库解决方案,适用于离线计算场景。它由计算与存储层、逻辑层、接入层和客户端四部分组成,支持多种计算任务的统一调度与管理。
250 1