基于ICP配准算法的三维点云数据的匹配仿真

简介: 基于ICP配准算法的三维点云数据的匹配仿真

1.算法仿真效果
matlab2022a仿真结果如下:

2eb1dd6f5a085797d9c43ef3d93cf63a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
bdb1159010e8278911b1f1714423fcdc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
092acb16287d039e09c10d65dd1d2df9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   ICP算法能够使不同的坐标下的点云数据合并到同一个坐标系统中,首先是找到一个可用的变换,配准操作实际是要找到从坐标系1到坐标系2的一个刚性变换。ICP算法本质上是基于最小二乘法的最优配准方法。该算法重复进行选择对应关系点对, 计算最优刚体变换,直到满足正确配准的收敛精度要求。ICP 算法的目的是要找到待配准点云数据与参考云数据之间的旋转参数R和平移参数 T,使得两点数据之间满足某种度量准则下的最优匹配。

假设给两个三维点集 X1 和 X2,ICP方法的配准步骤如下:

第一步,计算X2中的每一个点在X1 点集中的对应近点;

第二步,求得使上述对应点对平均距离最小的刚体变换,求得平移参数和旋转参数;

第三步,对X2使用上一步求得的平移和旋转参数,得到新的变换点集;

第四步, 如果新的变换点集与参考点集满足两点集的平均距离小于某一给定阈值,则停止迭代计算,否则新的变换点集作为新的X2继续迭代,直到达到目标函数的要求。

     最近点对查找:对应点的计算是整个配准过程中耗费时间最长的步骤,查找最近点,利用 k-d tree提高查找速度 K-d tree 法建立点的拓扑关系是基于二叉树的坐标轴分割,构造 k-d tree 的过程就是按照二叉树法则生成,首先按 X 轴寻找分割线,即计算所有点的x值的平均值,以最接近这个平均值的点的x值将空间分成两部分,然后在分成的子空间中按 Y 轴寻找分割线,将其各分成两部分,分割好的子空间在按X轴分割……依此类推,最后直到分割的区域内只有一个点。这样的分割过程就对应于一个二叉树,二叉树的分节点就对应一条分割线,而二叉树的每个叶子节点就对应一个点。这样点的拓扑关系就建立了。

    点云配准本质上是将点云从一个坐标系变换到另一个坐标系。

    点云配准通常会需要用到两个点云数据。第一类点云数据称为原始点云,用S(source)来表示。第二类点云数据称为目标点云,用T(Target)来表示。

    点云配准是让原始点云S在目标点云T的坐标上进行显示。我们可以通过找到点云中具有相似特征的点云来确定坐标的变换关系。例如,同一个物体的点云同时出现在原始点云和目标点云中,并且在两个点云中有特征相似的部分点云,根据这些相似的点云信息来计算出变换关系。

    假设原始点云到目标点云发生的是刚体变换,即原始点云通过旋转和平移即可得到目标点云。这里的旋转和平移过程用旋转变换矩阵R和平移变换矩阵T来表示。我们用P(S)表示原始点云中的点,P(T)表示原始点云在目标点云坐标系中的点。那么这种变换关系可以表示为:

a5781132707cbe26e4e4f07ee770260d_088ab5f0662a4fec27d2032d782b52c724a4bf.gif

                                         

    因此,点云配准的主要任务是计算出旋转矩阵R和平移矩阵T。

3.MATLAB核心程序

if strcmp(arg.Matching, 'Delaunay')
    DT = DelaunayTri(transpose(q));
end
 
% If Matching == 'kDtree', a kD tree should be built (req. Stat. TB >= 7.3)
if strcmp(arg.Matching, 'kDtree')
    kdOBJ = KDTreeSearcher(transpose(q));
end
 
% If edge vertices should be rejected, find edge vertices
if arg.EdgeRejection
    if isempty(arg.Boundary)
        bdr = find_bound(q, arg.Triangulation);
    else
        bdr = arg.Boundary;
    end
end
 
if arg.Extrapolation
    % Initialize total transform vector (quaternion ; translation vec.)
    qq = [ones(1,arg.iter+1);zeros(6,arg.iter+1)];   
    % Allocate vector for direction change and change angle.
    dq = zeros(7,arg.iter+1);
    theta = zeros(1,arg.iter+1);
end
 
t(1) = toc;
 
% Go into main iteration loop
for k=1:arg.iter
       
    % Do matching
    switch arg.Matching
        case 'bruteForce'
            [match mindist] = match_bruteForce(q,pt);
        case 'Delaunay'
            [match mindist] = match_Delaunay(q,pt,DT);
        case 'kDtree'
            [match mindist] = match_kDtree(q,pt,kdOBJ);
    end
 
.......................................................................
 
    % Add to the total transformation
    TR(:,:,k+1) = R*TR(:,:,k);
    TT(:,:,k+1) = R*TT(:,:,k)+T;
 
    % Apply last transformation
    pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np);
    
    % Root mean of objective function 
    ER(k+1) = rms_error(q(:,q_idx), pt(:,p_idx));
    
    % If Extrapolation, we might be able to move quicker
    if arg.Extrapolation
        qq(:,k+1) = [rmat2quat(TR(:,:,k+1));TT(:,:,k+1)];
        dq(:,k+1) = qq(:,k+1) - qq(:,k);
        theta(k+1) = (180/pi)*acos(dot(dq(:,k),dq(:,k+1))/(norm(dq(:,k))*norm(dq(:,k+1))));
        if arg.Verbose
            disp(['Direction change ' num2str(theta(k+1)) ' degree in iteration ' num2str(k)]);
        end
        if k>2 && theta(k+1) < 10 && theta(k) < 10
            d = [ER(k+1), ER(k), ER(k-1)];
            v = [0, -norm(dq(:,k+1)), -norm(dq(:,k))-norm(dq(:,k+1))];
            vmax = 25 * norm(dq(:,k+1));
            dv = extrapolate(v,d,vmax);
            if dv ~= 0
                q_mark = qq(:,k+1) + dv * dq(:,k+1)/norm(dq(:,k+1));
                q_mark(1:4) = q_mark(1:4)/norm(q_mark(1:4));
                qq(:,k+1) = q_mark;
                TR(:,:,k+1) = quat2rmat(qq(1:4,k+1));
                TT(:,:,k+1) = qq(5:7,k+1);
                % Reapply total transformation
                pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np);
                % Recalculate root mean of objective function
                % Note this is costly and only for fun!
                switch arg.Matching
                    case 'bruteForce'
                        [~, mindist] = match_bruteForce(q,pt);
                    case 'Delaunay'
                        [~, mindist] = match_Delaunay(q,pt,DT);
                    case 'kDtree'
                        [~, mindist] = match_kDtree(q,pt,kdOBJ);
                end
                ER(k+1) = sqrt(sum(mindist.^2)/length(mindist));
            end
        end
    end
    t(k+1) = toc;
end
 
if not(arg.ReturnAll)
    TR = TR(:,:,end);
    TT = TT(:,:,end);
end
相关文章
|
4天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
117 80
|
1天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
9天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
3天前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
23天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
29天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
16天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
25天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
108 15
|
16天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
22天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。

热门文章

最新文章