基于ICP配准算法的三维点云数据的匹配仿真

简介: 基于ICP配准算法的三维点云数据的匹配仿真

1.算法仿真效果
matlab2022a仿真结果如下:

2eb1dd6f5a085797d9c43ef3d93cf63a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
bdb1159010e8278911b1f1714423fcdc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
092acb16287d039e09c10d65dd1d2df9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   ICP算法能够使不同的坐标下的点云数据合并到同一个坐标系统中,首先是找到一个可用的变换,配准操作实际是要找到从坐标系1到坐标系2的一个刚性变换。ICP算法本质上是基于最小二乘法的最优配准方法。该算法重复进行选择对应关系点对, 计算最优刚体变换,直到满足正确配准的收敛精度要求。ICP 算法的目的是要找到待配准点云数据与参考云数据之间的旋转参数R和平移参数 T,使得两点数据之间满足某种度量准则下的最优匹配。

假设给两个三维点集 X1 和 X2,ICP方法的配准步骤如下:

第一步,计算X2中的每一个点在X1 点集中的对应近点;

第二步,求得使上述对应点对平均距离最小的刚体变换,求得平移参数和旋转参数;

第三步,对X2使用上一步求得的平移和旋转参数,得到新的变换点集;

第四步, 如果新的变换点集与参考点集满足两点集的平均距离小于某一给定阈值,则停止迭代计算,否则新的变换点集作为新的X2继续迭代,直到达到目标函数的要求。

     最近点对查找:对应点的计算是整个配准过程中耗费时间最长的步骤,查找最近点,利用 k-d tree提高查找速度 K-d tree 法建立点的拓扑关系是基于二叉树的坐标轴分割,构造 k-d tree 的过程就是按照二叉树法则生成,首先按 X 轴寻找分割线,即计算所有点的x值的平均值,以最接近这个平均值的点的x值将空间分成两部分,然后在分成的子空间中按 Y 轴寻找分割线,将其各分成两部分,分割好的子空间在按X轴分割……依此类推,最后直到分割的区域内只有一个点。这样的分割过程就对应于一个二叉树,二叉树的分节点就对应一条分割线,而二叉树的每个叶子节点就对应一个点。这样点的拓扑关系就建立了。

    点云配准本质上是将点云从一个坐标系变换到另一个坐标系。

    点云配准通常会需要用到两个点云数据。第一类点云数据称为原始点云,用S(source)来表示。第二类点云数据称为目标点云,用T(Target)来表示。

    点云配准是让原始点云S在目标点云T的坐标上进行显示。我们可以通过找到点云中具有相似特征的点云来确定坐标的变换关系。例如,同一个物体的点云同时出现在原始点云和目标点云中,并且在两个点云中有特征相似的部分点云,根据这些相似的点云信息来计算出变换关系。

    假设原始点云到目标点云发生的是刚体变换,即原始点云通过旋转和平移即可得到目标点云。这里的旋转和平移过程用旋转变换矩阵R和平移变换矩阵T来表示。我们用P(S)表示原始点云中的点,P(T)表示原始点云在目标点云坐标系中的点。那么这种变换关系可以表示为:

a5781132707cbe26e4e4f07ee770260d_088ab5f0662a4fec27d2032d782b52c724a4bf.gif

                                         

    因此,点云配准的主要任务是计算出旋转矩阵R和平移矩阵T。

3.MATLAB核心程序

if strcmp(arg.Matching, 'Delaunay')
    DT = DelaunayTri(transpose(q));
end
 
% If Matching == 'kDtree', a kD tree should be built (req. Stat. TB >= 7.3)
if strcmp(arg.Matching, 'kDtree')
    kdOBJ = KDTreeSearcher(transpose(q));
end
 
% If edge vertices should be rejected, find edge vertices
if arg.EdgeRejection
    if isempty(arg.Boundary)
        bdr = find_bound(q, arg.Triangulation);
    else
        bdr = arg.Boundary;
    end
end
 
if arg.Extrapolation
    % Initialize total transform vector (quaternion ; translation vec.)
    qq = [ones(1,arg.iter+1);zeros(6,arg.iter+1)];   
    % Allocate vector for direction change and change angle.
    dq = zeros(7,arg.iter+1);
    theta = zeros(1,arg.iter+1);
end
 
t(1) = toc;
 
% Go into main iteration loop
for k=1:arg.iter
       
    % Do matching
    switch arg.Matching
        case 'bruteForce'
            [match mindist] = match_bruteForce(q,pt);
        case 'Delaunay'
            [match mindist] = match_Delaunay(q,pt,DT);
        case 'kDtree'
            [match mindist] = match_kDtree(q,pt,kdOBJ);
    end
 
.......................................................................
 
    % Add to the total transformation
    TR(:,:,k+1) = R*TR(:,:,k);
    TT(:,:,k+1) = R*TT(:,:,k)+T;
 
    % Apply last transformation
    pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np);
    
    % Root mean of objective function 
    ER(k+1) = rms_error(q(:,q_idx), pt(:,p_idx));
    
    % If Extrapolation, we might be able to move quicker
    if arg.Extrapolation
        qq(:,k+1) = [rmat2quat(TR(:,:,k+1));TT(:,:,k+1)];
        dq(:,k+1) = qq(:,k+1) - qq(:,k);
        theta(k+1) = (180/pi)*acos(dot(dq(:,k),dq(:,k+1))/(norm(dq(:,k))*norm(dq(:,k+1))));
        if arg.Verbose
            disp(['Direction change ' num2str(theta(k+1)) ' degree in iteration ' num2str(k)]);
        end
        if k>2 && theta(k+1) < 10 && theta(k) < 10
            d = [ER(k+1), ER(k), ER(k-1)];
            v = [0, -norm(dq(:,k+1)), -norm(dq(:,k))-norm(dq(:,k+1))];
            vmax = 25 * norm(dq(:,k+1));
            dv = extrapolate(v,d,vmax);
            if dv ~= 0
                q_mark = qq(:,k+1) + dv * dq(:,k+1)/norm(dq(:,k+1));
                q_mark(1:4) = q_mark(1:4)/norm(q_mark(1:4));
                qq(:,k+1) = q_mark;
                TR(:,:,k+1) = quat2rmat(qq(1:4,k+1));
                TT(:,:,k+1) = qq(5:7,k+1);
                % Reapply total transformation
                pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np);
                % Recalculate root mean of objective function
                % Note this is costly and only for fun!
                switch arg.Matching
                    case 'bruteForce'
                        [~, mindist] = match_bruteForce(q,pt);
                    case 'Delaunay'
                        [~, mindist] = match_Delaunay(q,pt,DT);
                    case 'kDtree'
                        [~, mindist] = match_kDtree(q,pt,kdOBJ);
                end
                ER(k+1) = sqrt(sum(mindist.^2)/length(mindist));
            end
        end
    end
    t(k+1) = toc;
end
 
if not(arg.ReturnAll)
    TR = TR(:,:,end);
    TT = TT(:,:,end);
end
相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
1天前
|
机器学习/深度学习 算法 搜索推荐
联邦学习的未来:深入剖析FedAvg算法与数据不均衡的解决之道
随着数据隐私和数据安全法规的不断加强,传统的集中式机器学习方法受到越来越多的限制。为了在分布式数据场景中高效训练模型,同时保护用户数据隐私,联邦学习(Federated Learning, FL)应运而生。它允许多个参与方在本地数据上训练模型,并通过共享模型参数而非原始数据,实现协同建模。
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。

热门文章

最新文章