Python 大数据量文本文件高效解析方案代码实现

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云解析 DNS,旗舰版 1个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: Python 大数据量文本文件高效解析方案代码实现

大数据量文本文件高效解析方案代码实现

测试环境

Python 3.6.2

Win 10 内存 8G,CPU I5 1.6 GHz

背景描述

这个作品来源于一个日志解析工具的开发,这个开发过程中遇到的一个痛点,就是日志文件多,日志数据量大,解析耗时长。在这种情况下,寻思一种高效解析数据解析方案。

解决方案描述

1、采用多线程读取文件

2、采用按块读取文件替代按行读取文件

由于日志文件都是文本文件,需要读取其中每一行进行解析,所以一开始会很自然想到采用按行读取,后面发现合理配置下,按块读取,会比按行读取更高效。

按块读取来的问题就是,可能导致完整的数据行分散在不同数据块中,那怎么解决这个问题呢?解答如下:

将数据块按换行符\n切分得到日志行列表,列表第一个元素可能是一个完整的日志行,也可能是上一个数据块末尾日志行的组成部分,列表最后一个元素可能是不完整的日志行(即下一个数据块开头日志行的组成部分),也可能是空字符串(日志块中的日志行数据全部是完整的),根据这个规律,得出以下公式,通过该公式,可以得到一个新的数据块,对该数据块二次切分,可以得到数据完整的日志行

上一个日志块首部日志行 +\n + 尾部日志行 + 下一个数据块首部日志行 + \n + 尾部日志行 + ...

3、将数据解析操作拆分为可并行解析部分和不可并行解析部分

数据解析往往涉及一些不可并行的操作,比如数据求和,最值统计等,如果不进行拆分,并行解析时势必需要添加互斥锁,避免数据覆盖,这样就会大大降低执行的效率,特别是不可并行操作占比较大的情况下。

对数据解析操作进行拆分后,可并行解析操作部分不用加锁。考虑到Python GIL的问题,不可并行解析部分替换为单进程解析。

4、采用多进程解析替代多线程解析

采用多进程解析替代多线程解析,可以避开Python GIL全局解释锁带来的执行效率问题,从而提高解析效率。

5、采用队列实现“协同”效果

引入队列机制,实现一边读取日志,一边进行数据解析:

  1. 日志读取线程将日志块存储到队列,解析进程从队列获取已读取日志块,执行可并行解析操作
  2. 并行解析操作进程将解析后的结果存储到另一个队列,另一个解析进程从队列获取数据,执行不可并行解析操作。

代码实现

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import re
import time
from datetime import datetime
from joblib import Parallel, delayed, parallel_backend
from collections import deque
from multiprocessing import cpu_count
import threading
class LogParser(object):
    def __init__(self, chunk_size=1024*1024*10, process_num_for_log_parsing=cpu_count()):
        self.log_unparsed_queue = deque() # 用于存储未解析日志
        self.log_line_parsed_queue = deque()  # 用于存储已解析日志行
        self.is_all_files_read = False  # 标识是否已读取所有日志文件
        self.process_num_for_log_parsing = process_num_for_log_parsing # 并发解析日志文件进程数
        self.chunk_size = chunk_size # 每次读取日志的日志块大小
        self.files_read_list = [] # 存放已读取日志文件
        self.log_parsing_finished = False # 标识是否完成日志解析
    def read_in_chunks(self, filePath, chunk_size=1024*1024):
        """
        惰性函数(生成器),用于逐块读取文件。
        默认区块大小:1M
        """
        with open(filePath, 'r', encoding='utf-8') as f:            
            while True:
                chunk_data = f.read(chunk_size)
                if not chunk_data:
                    break
                yield chunk_data
    def read_log_file(self, logfile_path):
        '''
        读取日志文件
        这里假设日志文件都是文本文件,按块读取后,可按换行符进行二次切分,以便获取行日志
        '''
        temp_list = []  # 二次切分后,头,尾行日志可能是不完整的,所以需要将日志块头尾行日志相连接,进行拼接
        for chunk in self.read_in_chunks(logfile_path, self.chunk_size):
            log_chunk = chunk.split('\n')
            temp_list.extend([log_chunk[0], '\n'])
            temp_list.append(log_chunk[-1])
            self.log_unparsed_queue.append(log_chunk[1:-1])
        self.log_unparsed_queue.append(''.join(temp_list).split('\n'))
        self.files_read_list.remove(logfile_path)
    def start_processes_for_log_parsing(self):
        '''启动日志解析进程'''
        with parallel_backend("multiprocessing", n_jobs=self.process_num_for_log_parsing):
            Parallel(require='sharedmem')(delayed(self.parse_logs)() for i in range(self.process_num_for_log_parsing))
        self.log_parsing_finished = True
    def parse_logs(self):
        '''解析日志'''
        method_url_re_pattern = re.compile('(HEAD|POST|GET)\s+([^\s]+?)\s+',re.DOTALL)
        url_time_taken_extractor = re.compile('HTTP/1\.1.+\|(.+)\|\d+\|', re.DOTALL)
        while self.log_unparsed_queue or self.files_read_list:
            if not self.log_unparsed_queue:
                continue
            log_line_list = self.log_unparsed_queue.popleft()
            for log_line in log_line_list:
                #### do something with log_line
                if not log_line.strip():
                    continue
                res = method_url_re_pattern.findall(log_line)
                if not res:
                    print('日志未匹配到请求URL,已忽略:\n%s' % log_line)
                    continue
                method = res[0][0]
                url = res[0][1].split('?')[0]  # 去掉了 ?及后面的url参数
                # 提取耗时
                res = url_time_taken_extractor.findall(log_line)
                if res:
                    time_taken = float(res[0])
                else:
                    print('未从日志提取到请求耗时,已忽略日志:\n%s' % log_line)
                    continue
                # 存储解析后的日志信息
                self.log_line_parsed_queue.append({'method': method,
                                                   'url': url,
                                                   'time_taken': time_taken,
                                                   })
    def collect_statistics(self):
        '''收集统计数据'''
        def _collect_statistics():
            while self.log_line_parsed_queue or not self.log_parsing_finished:
                if not self.log_line_parsed_queue:
                    continue
                log_info = self.log_line_parsed_queue.popleft()
                # do something with log_info
        with parallel_backend("multiprocessing", n_jobs=1):
            Parallel()(delayed(_collect_statistics)() for i in range(1))
    def run(self, file_path_list):
        # 多线程读取日志文件
        for file_path in file_path_list:
            thread = threading.Thread(target=self.read_log_file,
                                      name="read_log_file",
                                      args=(file_path,))
            thread.start()
            self.files_read_list.append(file_path)
        # 启动日志解析进程
        thread = threading.Thread(target=self.start_processes_for_log_parsing, name="start_processes_for_log_parsing")
        thread.start()
        # 启动日志统计数据收集进程
        thread = threading.Thread(target=self.collect_statistics, name="collect_statistics")
        thread.start()
        start = datetime.now()
        while threading.active_count() > 1:
            print('程序正在努力解析日志...')
            time.sleep(0.5)
        end = datetime.now()
        print('解析完成', 'start', start, 'end', end, '耗时', end - start)
if __name__ == "__main__":
    log_parser = LogParser()
    log_parser.run(['access.log', 'access2.log'])

注意:

需要合理的配置单次读取文件数据块的大小,不能过大,或者过小,否则都可能会导致数据读取速度变慢。笔者实践环境下,发现10M~15M每次是一个比较高效的配置。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
3天前
|
安全 虚拟化
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力。通过具体案例,展示了方案的制定和实施过程,强调了目标明确、技术先进、计划周密、风险可控和预算合理的重要性。
15 5
|
2天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
14 2
|
4天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
7天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
3天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
10 1
|
8天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
4天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
8天前
|
存储 算法 搜索推荐
Python高手必备!揭秘图(Graph)的N种风骚表示法,让你的代码瞬间高大上
在Python中,图作为重要的数据结构,广泛应用于社交网络分析、路径查找等领域。本文介绍四种图的表示方法:邻接矩阵、邻接表、边列表和邻接集。每种方法都有其特点和适用场景,掌握它们能提升代码效率和可读性,让你在项目中脱颖而出。
21 5
|
6天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
16 2
|
8天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
25 4