性能测试 基于Python结合InfluxDB及Grafana图表实时采集Linux多主机性能数据

本文涉及的产品
性能测试 PTS,5000VUM额度
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 性能测试 基于Python结合InfluxDB及Grafana图表实时采集Linux多主机性能数据

基于Python结合InfluxDB及Grafana图表实时采集Linux多主机性能数据

 

by:授客 QQ:1033553122

 

实现功能

测试环境

环境搭建

使用前提

使用方法

运行程序

效果展示

 

实现功能

无需在被监控主机上安装代理,一键对Linux远程服务器不同主机执行性能监控、性能数据采集命令,并实时展示

 

支持跨堡垒机收集实时性能数据(注:定制化开发,非通用)

 

支持docker容器(因为程序实现是从docker容器内部获取性能数据,所以目前仅支持 CPU,内存,I/O)

 

使用前提

可以用Xshell等工具远程连接Linux主机

 

Linux主机支持sar命令

 

dokcer容器内部挂载了docker容器自身的cgroup系统

 

注:目前不支持嵌套cgroup下子cgroup的性能数据监控

 

测试环境

Win7 64位

 

Python 3.4.0

 

CentOS 6 64位(内核版本2.6.32-642.el6.x86_64)

 

influxdb-1.5.2.x86_64.rpm

网盘下载地址:

https://pan.baidu.com/s/1jAbY4xz5gvzoXxLHesQ-PA

 

 

grafana-5.1.2-1.x86_64.rpm

下载地址:

https://s3-us-west-2.amazonaws.com/grafana-releases/release/grafana-5.1.3-1.x86_64.rpm

下载地址:https://pan.baidu.com/s/1wtnPH-iYxaXc6FnL1i0ZVg

 

 

influxdb-5.0.0-py2.py3-none-any.whl

下载地址:

https://pypi.org/project/influxdb/#files

下载地址:https://pan.baidu.com/s/1DQ0HGYNg2a2-VnRSBdPHmg

 

paramiko 1.15.2

下载地址:

https://pypi.python.org/pypi/paramiko/1.15.2

https://pan.baidu.com/s/1i4SJ1CL

 

cryptography-1.0-cp34-none-win_amd64.whl

(如果paramiko可以正常安装完,则不需要安装该类库)

下载地址:

https://pypi.python.org/pypi/cryptography/1.0

https://pan.baidu.com/s/1jIRBJvg

 

安装好后,找到nt.py(本例中路径为:

Lib\site-packages\pycrypto-2.6.1-py3.4-win-amd64.egg\Crypto\Random\OSRNG\nt.py),修改

import winrandom

from Crypto.Random.OSRNG import winrandom

如下

#import winrandom

from Crypto.Random.OSRNG import winrandom

 

以解决ImportError: No module named 'winrandom'错误

 

说明:具体文件路径可能还得根据实际报错情况来确定,如下

............(略)

"D:\Program Files\python33\lib\site-packages\Crypto\Random\OSRNG\nt.py", line 28, in <module>

   import winrandom

ImportError: No module named 'winrandom'

 

 

 

VS2010

因操作系统而异,可能需要安装VS2010,以解决包依赖问题

 

 

 

环境搭建

参考CentOS下结合InfluxDB及Grafananux图表实时展示JMeter相关性能数据

 

 

 

使用方法

influxDB主机配置

monitor\conf\influxDB.conf

[INFLUXDB]

influxdb_host = 10.203.25.106

influxdb_port = 8086

 

主机登录信息配置

(用于远程ssh登录)

monitor\conf\host_config.conf

[10.203.36.1]

host = 10.203.36.1

username = xxxx

password = xxxx

port = 22

remark = 鉴权微服务

 

[10.203.36.33]

host = 10.203.36.33

username = xxxx

password = xxxx

port = 22

remark = 发货微服务

 

[10.202.27.5]

host = 10.202.27.5

username = xxxx

password = xxxx

port = 22

remark = 堡垒机

 

 

[10.202.27.6]

host = 10.202.27.6

username = xxxx

password = xxxx

port = 22

remark = 堡垒机

 

 

说明:

[需要监控的Linux服务器IP]

host = 需要监控的Linux服务器IP

username = 远程登录用户名

password = 用户密码

port = 22

remark = 补充说明

 

堡垒机-目标机配置

bastion_host_config.conf

[10.202.27.5]

ip1 = 10.203.33.18

ip2 = 10.203.33.19

ip3 = 10.203.33.20

 

[10.202.27.6]

ip4 = 10.203.33.21

ip5 = 10.203.32.49

ip6 = 10.203.33.4

 

说明:

[堡垒机ip]

自定义名称 = 需要通过堡垒机访问的目标ip

 

注意:不同堡垒机节点下的目标ip不能重复

 

堡垒机连接目标机,账号密码,登录用户选取等信息配置

monitor\conf\account.conf

[ACCOUNT]

user_id = 01367522

pwd = xxx

login_user_choice = 1

 

dokcer容器cpu, cpuacct,memory,blkio系统路径配置

[CGROUPPATH]

cpu_path=/sys/fs/cgroup/cpu

cpuacct_path=/sys/fs/cgroup/cpuacct

memory_path=/sys/fs/cgroup/memory

blkio_path=/sys/fs/cgroup/blkio/

 

#cpu_path=/cgroup/cpu/docker/docker/$CONTAINERID

#cpuacct_path=/cgroup/cpuacct/docker/docker/$CONTAINERID

#memory_path=/cgroup/memory/docker/docker/$CONTAINERID

#blkio_path=/cgroup/blkio/docker/docker/$CONTAINERID

 

#cpu_path=/cgroup/cpu/docker/d74ac2610ed325498767bc708197148d414bf6a7719f15c013dc2b6460690dd8

#cpuacct_path=/cgroup/cpuacct/docker/d74ac2610ed325498767bc708197148d414bf6a7719f15c013dc2b6460690dd8

#memory_path=/cgroup/memory/docker/d74ac2610ed325498767bc708197148d414bf6a7719f15c013dc2b6460690dd8

#blkio_path=/cgroup/blkio/docker/d74ac2610ed325498767bc708197148d414bf6a7719f15c013dc2b6460690dd8

 

说明:

系统路径支持简单的参数化,目前仅支持容器ID(大写的$CONTAINERID),如上

一次仅支持一组配置

 

配置单台目标机器上不要采集的性能指标维度(可选)

monitor\conf\host_filter.conf

[HOSTFILTER]

10.203.36.1 = onecpu, disk

#10.203.36.33 =

10.203.36.4 =

 

[HOSTFILTER]

待监控目标ip = 指标维度1, 指标维度2, 维度之间用逗号分隔

 

维度说明:

onecpu  不采集单个cpu的性能数据信息

queue   不采集系统负载队列长度和负载均值性能数据信息

proc    不采集任务创建和系统上下文切换信息

mem     不采集内存性能数据信息

swap    不采集swap交换统计信息

swapspace 不采集swap空间使用率信息

deviotps 不采集磁盘设备I/O性能数据信息

netdev  不采集网络设备(一般指网卡)的性能数据信息

enetdev 不采集网络设备(一般指网卡)的出错数据信息

disk    不采集单个磁盘的性能数据信息

paging  不采集分页信息

 

如果不需要过滤,可不配置,或者如上 设置ip等于空,或者用 #注释

 

 

待监控主机配置

monitor\conf\target_host_for_monitor.conf

# #代表注释

10.203.36.1

10.203.36.33

 

# 堡垒机

10.202.27.5

 

# 需要通过堡垒机访问的目标ip

ip1 = 10.203.33.18

 

 

注意:

1、每一行代表需要监控的ip

如果ip不需要通过堡垒机访问,那么这个ip必须在monitor\conf\host_config.conf有对应的配置才会被监控,不想监控则注释;

如果ip需要通过堡垒机访问,那么这个ip必须在 monitor\conf\bastion_host_config.conf 下有对应的配置,且这里必须配置对应堡垒机IP,才会被监控

 

 

 

运行程序

数据收集:

 

python main.py

 

或者

python main.py 2 20

 

python main.py 2 10+45+10

 

python main.py 2 ’10 + 45 + 10’

 

python main.py 2 20 onecpu netdev enetdev disk paging

 

python main.py 采集频率(默认1次/s) 采集时间(秒,默认1s) 不监控维度

 

说明:为了方便,采集时间可以写成加减运算表达式,省去“心算”,方便算术能力不好的人,比如我~~

 

如果需要设置不监控维度(每个维度之间用逗号相隔,目前仅支持以下维度),则一定要“显示”的指定采集频率和采集时间

 

onecpu  不采集单个cpu的性能数据信息

queue   不采集系统负载队列长度和负载均值性能数据信息

proc    不采集任务创建和系统上下文切换信息

mem     不采集内存性能数据信息

swap    不采集swap交换统计信息

swapspace 不采集swap空间使用率信息

deviotps 不采集磁盘设备I/O性能数据信息

netdev  不采集网络设备(一般指网卡)的性能数据信息

enetdev 不采集网络设备(一般指网卡)的出错数据信息

disk    不采集单个磁盘的性能数据信息

paging  不采集分页信息

 

注意:

1、这里的维度过滤是针对所有待监控目标机的,针对单台机器的过滤项是在这个基础上做的进一步过滤

 

2、如果逻辑CPU个数,磁盘设备,网卡设备过多的情况下,如果不过滤对应指标,可能会因为采集的数据量过大,解析耗时加长,无法及时显示所要的数据(特别是CPU,单台机器有几十个逻辑CPU的情况下,延迟会很严重)。

 

实践测试记录:公司服务器,1秒钟采集一次,采集1个小时,统一加过滤项,如下方式运行

 

python main.py 1 3600  onecpu netdev enetdev paging

 

44台机器同时采集(总的会开启88个线程),可以做到实时显示

 

3、docker容器监控,不支持维度过滤,即IO,CPU,内存要么监控,要么不监控

 

 

数据清理:

python dropDB.py

 

根据提示,可删除单个数据库,或者一次性删除所有数据库的数据

 

效果展示

 

下载地址:https://gitee.com/ishouke/PMonitor

相关实践学习
通过可观测可视化Grafana版进行数据可视化展示与分析
使用可观测可视化Grafana版进行数据可视化展示与分析。
目录
相关文章
|
1月前
|
数据采集 JSON 测试技术
如何在Python中高效实现CSV到JSON的数据转换
在实际项目中,数据格式转换是常见问题,尤其从CSV到JSON的转换。本文深入探讨了多种转换方法,涵盖Python基础实现、数据预处理、错误处理、性能优化及调试验证技巧。通过分块处理、并行处理等手段提升大文件转换效率,并介绍如何封装为命令行工具或Web API,实现自动化批量处理。关键点包括基础实现、数据清洗、异常捕获、性能优化和单元测试,确保转换流程稳定高效。
152 83
|
1天前
|
数据库 Python
【YashanDB知识库】python驱动查询gbk字符集崖山数据库CLOB字段,数据被驱动截断
【YashanDB知识库】python驱动查询gbk字符集崖山数据库CLOB字段,数据被驱动截断
|
19天前
|
JSON API 数据格式
Python 请求微店商品详情数据 API 接口
微店开放平台允许开发者通过API获取商品详情数据。使用Python请求微店商品详情API的主要步骤包括:1. 注册并申请API权限,获得app_key和app_secret;2. 确定API接口地址与请求参数,如商品ID;3. 生成签名确保请求安全合法;4. 使用requests库发送HTTP请求获取数据;5. 处理返回的JSON格式响应数据。开发时需严格遵循微店API文档要求。
|
15天前
|
数据采集 XML 存储
Python爬虫实战:一键采集电商数据,掌握市场动态!
这个爬虫还挺实用,不光能爬电商数据,改改解析规则,啥数据都能爬。写爬虫最重要的是要有耐心,遇到问题别着急,慢慢调试就成。代码写好了,运行起来那叫一个爽,分分钟几千条数据到手。
|
1月前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
从零开始:用Python爬取网站的汽车品牌和价格数据
|
18天前
|
JSON 监控 API
python语言采集淘宝商品详情数据,json数据示例返回
通过淘宝开放平台的API接口,开发者可以轻松获取商品详情数据,并利用这些数据进行商品分析、价格监控、库存管理等操作。本文提供的示例代码和JSON数据解析方法,可以帮助您快速上手淘宝商品数据的采集与处理。
|
1月前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
57 12
|
24天前
|
数据采集 供应链 API
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!
|
1月前
|
数据采集 存储 前端开发
用Python抓取亚马逊动态加载数据,一文读懂
用Python抓取亚马逊动态加载数据,一文读懂
|
23天前
|
存储 数据采集 JSON
Python爬取某云热歌榜:解析动态加载的歌曲数据
Python爬取某云热歌榜:解析动态加载的歌曲数据