AutoGPT、AgentGPT、BabyAGI、HuggingGPT、CAMEL:各种基于GPT-4自治系统总结

简介: ChatGPT和LLM技术的出现使得这些最先进的语言模型席卷了世界,不仅是AI的开发人员,爱好者和一些组织也在研究探索集成和构建这些模型的创新方法。各种平台如雨后春笋般涌现,集成并促进新应用程序的开发。

AutoGPT的火爆让我们看到越来越多的自主任务和代理利用了GPT-4的API。这些发展不仅增强了处理集成不同系统的复杂任务的能力,而且还推动了我们通过自主人工智能所能实现的界限。

我们这里将整理一些开源的类似AutoGPT的工具系统,这些工具和应用程序可以大致分为命令行接口(CLI)和基于浏览器的解决方案,HuggingGPT可以同时支持这两种解决方案。

命令行:AutoGPT, BabyAGI

浏览器:AgentGPT, CAMEL, Web LLM

Auto-GPT

尽管Auto-GPT是一个实验性的开源应用程序,但是它的增长是迅速的。该程序由GPT-4驱动,可以自主实现设定的任何目标。

GitHub: https://github.com/Significant-Gravitas/Auto-GPT

看看它的Github Star的增长幅度可以看到最近的火爆

AgentGPT

AgentGPT是一种基于web的解决方案。它允许配置和部署自治AI代理,并让它完成任何目标。它将尝试通过思考要做的任务、执行任务并从结果中学习来达到目标。

该平台目前处于测试阶段,正在开发以下功能:

  • 通过矢量DB进行长期的记忆
  • 通过LangChain(LangChain是一个用于构建基于大型语言模型LLM的应用程序的库)进行web浏览
  • 与网站和人的互动
  • 用户和身份验证

GitHub: https://github.com/reworkd/AgentGPT

网站: https://agentgpt.reworkd.ai/

BabyAGI

BabyAGI任务驱动自治代理的精简版本

它的主要思想是基于先前任务的结果和预定义的目标来创建任务。然后,脚本使用OpenAI的语言模型功能来创建基于目标的新任务,Pinecone来存储和检索上下文的任务结果,这可以说是最精简的自治AI架构了,如果你对这个方向有兴趣,可以看看他的代码。

GitHub: https://github.com/yoheinakajima/babyagi

网站: http://babyagi.org/

HuggingGPT

微软的HuggingGPT,又名JARVIS,它包括一个LLM作为控制器和许多专家模型作为协作执行者(来自HuggingFace Hub)。它工作流程包括四个阶段:

  • 任务规划:使用ChatGPT分析请求以了解意图,并将其分解为可能的可解决任务。
  • 模型选择:使用ChatGPT根据描述选择专家模型。
  • 任务执行:调用并执行每个选定的模型,并将结果返回给ChatGPT。
  • 响应生成:最后,使用ChatGPT集成所有模型的预测并生成响应。

GitHub: https://github.com/microsoft/JARVIS

HF: https://huggingface.co/spaces/microsoft/HuggingGPT

Web LLM

Web LLM是一个基于LLM和基于LLM的聊天机器人,在没有服务器支持的情况下在浏览器内运行,并通过WebGPU加速。从技术上讲,Web LLM不是人工智能的自治解决方案,而是轻量级的网络聊天机器人。

GitHub:https://github.com/mlc-ai/web-llm

CAMEL

CAMEL 是 ”Communicative Agents for ‘Mind’ Exploration of Large Scale Language Models“的缩写,它提出了一种新颖的代理框架,即角色扮演,作为 AutoGPT 和 AgentGPT 的替代方案。

GitHub: https://github.com/lightaime/camel

网站: http://agents.camel-ai.org/

GPTRPG

这个系统将游戏和大语言模型结合,主要包含2个部分

一个支持llm的AI代理的简单的类似rpg的环境

通过OpenAI API将AI代理植入到游戏环境的角色中

这是基于最近发布的一篇论文,其中部署了多个代理来自主参与在线游戏。

GitHub: https://github.com/dzoba/gptrpg

Arxiv:https://arxiv.org/abs/2304.03442

总结

集成ChatGPT和LLM到各种应用程序中只是使用语言模型的潜力的一部分。这些模型是为了处理自然语言任务而设计的,包括文本生成、翻译、摘要、问答等等。未来的语言模型将更加先进和智能,能够在更广泛的应用领域中提供帮助。

例如,未来的语言模型可以用于更准确的机器翻译,使人类之间的跨文化交流更加便利。他们也可以用于自动摘要和内容生成,以帮助作者和媒体机构更快地创建和发布内容。此外,语言模型也可以用于语音识别和自然语言处理,以便人们能够更好地与计算机交互。

总之,随着语言模型技术的不断进步,我们可以期待看到更多的创新和进步。这些模型将成为人工智能领域的核心技术,为我们提供更好的解决方案和更广泛的应用场景。

https://avoid.overfit.cn/post/0ae3c03243a343139471fffa4e9a75a3

作者:Tristan Wolff

目录
相关文章
|
7月前
|
人工智能 自然语言处理 安全
探秘SuperCLUE-Safety:为中文大模型打造的多轮对抗安全新框架
探秘SuperCLUE-Safety:为中文大模型打造的多轮对抗安全新框架【2月更文挑战第2天】
探秘SuperCLUE-Safety:为中文大模型打造的多轮对抗安全新框架
|
7月前
|
PyTorch 调度 算法框架/工具
问 ChatGPT 关于GPT的事情:扩展篇
问 ChatGPT 关于GPT的事情:扩展篇
88 0
|
7月前
|
人工智能 搜索推荐 安全
GPT Prompt编写的艺术:如何提高AI模型的表现力
GPT Prompt编写的艺术:如何提高AI模型的表现力
321 0
|
4月前
|
知识图谱
ARTIST的中文文图生成模型问题之通过GPT生成图像序列的问题如何解决
ARTIST的中文文图生成模型问题之通过GPT生成图像序列的问题如何解决
|
5月前
|
人工智能 自然语言处理 前端开发
如何用GPT开发一个基于 GPT 的应用?
如何用GPT开发一个基于 GPT 的应用?
117 0
|
数据采集 机器学习/深度学习 数据挖掘
提升ChatGPT性能的实用指南:Prompt Engineering的艺术
一起探索 Prompt Engineering 的奥秘,并学习如何用它来让 ChatGPT 发挥出最大的潜力。 什么是提示工程? 提示工程是一门新兴学科,就像是为大语言模型(LLM)设计的"语言游戏"。通过这个"游戏",我们可以更有效地引导 LLM 来处理问题。只有熟悉了这个游戏的规则,我们才能更清楚地认识到 LLM 的能力和局限。 这个"游戏"不仅帮助我们理解 LLM,它也是提升 LLM 能力的途径。有效的提示工程可以提高大语言模型处理复杂问题的能力(比如一些数学推理问题),也可以提高大语言模型的扩展性(比如可以结合专业领域的知识和外部工具,来提升 LLM 的能力)。
335 0
提升ChatGPT性能的实用指南:Prompt Engineering的艺术
|
自然语言处理 程序员
中文竞技场大语言模型评测
本文分别体验了知识常识领域、人类价值观领域、NLP专业领域这三个方向,对两个模型进行评测。
285 0
|
算法 测试技术 C++
代码生成 中文大语言模型
目前的中文大语言模型的能力,差的还有很多。希望这个平台能够帮助用户更好地认识和利用这些模型,同时也期待更多的用户参与进来,共同推动中文大语言模型的发展和进步。
400 1
|
机器学习/深度学习 存储 人工智能
后GPT书:从GPT-3开始,续写Transformer庞大家族系谱(3)
后GPT书:从GPT-3开始,续写Transformer庞大家族系谱
|
机器学习/深度学习 人工智能 自然语言处理
后GPT书:从GPT-3开始,续写Transformer庞大家族系谱(1)
后GPT书:从GPT-3开始,续写Transformer庞大家族系谱
113 0