TensorFlow HOWTO 2.1 支持向量分类(软间隔)

简介: TensorFlow HOWTO 2.1 支持向量分类(软间隔)

操作步骤


导入所需的包。


import tensorflow as tf
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import sklearn.datasets as ds
import sklearn.model_selection as ms


导入数据,并进行预处理。我们使用鸢尾花数据集所有样本,根据萼片长度和花瓣长度预测样本是不是山鸢尾(第一种)。注意,支持向量机只接受 1 和 -1 的标签。

iris = ds.load_iris()
x_ = iris.data[:, [0, 2]]
y_ = (iris.target == 0).astype(int)
y_[y_ == 0] = -1
y_ = np.expand_dims(y_ , 1)
x_train, x_test, y_train, y_test = \
    ms.train_test_split(x_, y_, train_size=0.7, test_size=0.3)


定义超参数。

变量 含义
n_input 样本特征数
n_epoch 迭代数
lr 学习率
lam L2 正则化项的系数


n_input = 2
n_epoch = 2000
lr = 0.05
lam = 0.05


搭建模型。

变量 含义
x 输入
y 真实标签
w 权重
b 偏置
z x的线性变换


x = tf.placeholder(tf.float64, [None, n_input])
y = tf.placeholder(tf.float64, [None, 1])
w = tf.Variable(np.random.rand(n_input, 1))
b = tf.Variable(np.random.rand(1, 1))
z = x @ w + b


定义损失、优化操作、和准确率度量指标。分类问题有很多指标,这里只展示一种。

我们使用 Hinge 损失和 L2 损失的组合。Hinge 损失为:

mean(max(1ZY,0))


在原始的模型中,约束是样本必须落在支持边界之外,也就是 y z > = 1 yz >= 1 yz>=1。我们将这个约束加到损失中,就得到了 Hinge 损失。它的意思是,对于满足约束的点,它的损失是零,对于不满足约束的点,它的损失是 1 − y z 1 - yz 1−yz。这样让样本尽可能到支持边界之外。


L2 损失用于最小化支持边界的几何距离,也就是 2 ∥ w ∥ \frac{2}{\|w\|} ∥w∥2。


变量 含义
hinge_loss Hinge 损失
l2_loss L2 损失
loss 总损失
op 优化操作
y_hat 标签的预测值
acc 准确率


hinge_loss = tf.reduce_mean(tf.maximum(1 - y * z, 0))
l2_loss = lam * tf.reduce_sum(w ** 2)
loss = hinge_loss + l2_loss
op = tf.train.AdamOptimizer(lr).minimize(loss)
y_hat = tf.to_double(z > 0) - tf.to_double(z <= 0)
acc = tf.reduce_mean(tf.to_double(tf.equal(y_hat, y)))


使用训练集训练模型。

losses = []
accs = []
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver(max_to_keep=1)
    for e in range(n_epoch):
        _, loss_ = sess.run([op, loss], feed_dict={x: x_train, y: y_train})
        losses.append(loss_)


使用测试集计算准确率。

acc_ = sess.run(acc, feed_dict={x: x_test, y: y_test})
        accs.append(acc_)


每一百步打印损失和度量值。

        if e % 100 == 0:
            print(f'epoch: {e}, loss: {loss_}, acc: {acc_}')
            saver.save(sess,'logit/logit', global_step=e)


得到决策边界:

    x_plt = x_[:, 0]
    y_plt = x_[:, 1]
    c_plt = y_.ravel()
    x_min = x_plt.min() - 1
    x_max = x_plt.max() + 1
    y_min = y_plt.min() - 1
    y_max = y_plt.max() + 1
    x_rng = np.arange(x_min, x_max, 0.05)
    y_rng = np.arange(y_min, y_max, 0.05)
    x_rng, y_rng = np.meshgrid(x_rng, y_rng)
    model_input = np.asarray([x_rng.ravel(), y_rng.ravel()]).T
    model_output = sess.run(y_hat, feed_dict={x: model_input}).astype(int)
    c_rng = model_output.reshape(x_rng.shape)


输出:

epoch: 0, loss: 4.511212919815273, acc: 0.2222222222222222
epoch: 100, loss: 0.0814942611949705, acc: 1.0
epoch: 200, loss: 0.07629443566925993, acc: 1.0
epoch: 300, loss: 0.07146107394130172, acc: 1.0
epoch: 400, loss: 0.06791927215796319, acc: 1.0
epoch: 500, loss: 0.06529065400047798, acc: 1.0
epoch: 600, loss: 0.06335060635876646, acc: 1.0
epoch: 700, loss: 0.061836271593737835, acc: 1.0
epoch: 800, loss: 0.06079800773555345, acc: 1.0
epoch: 900, loss: 0.06042716484730995, acc: 1.0
epoch: 1000, loss: 0.06091475237291386, acc: 1.0
epoch: 1100, loss: 0.06021069445352348, acc: 1.0
epoch: 1200, loss: 0.06019457351257251, acc: 1.0
epoch: 1300, loss: 0.06000348375369489, acc: 1.0
epoch: 1400, loss: 0.060206981088196394, acc: 1.0
epoch: 1500, loss: 0.060210741691625935, acc: 1.0
epoch: 1600, loss: 0.060570783158962985, acc: 1.0
epoch: 1700, loss: 0.06003457018203537, acc: 1.0
epoch: 1800, loss: 0.060203912161627175, acc: 1.0
epoch: 1900, loss: 0.06019910894894441, acc: 1.0


绘制整个数据集以及决策边界。

plt.figure()
cmap = mpl.colors.ListedColormap(['r', 'b'])
plt.scatter(x_plt, y_plt, c=c_plt, cmap=cmap)
plt.contourf(x_rng, y_rng, c_rng, alpha=0.2, linewidth=5, cmap=cmap)
plt.title('Data and Model')
plt.xlabel('Petal Length (cm)')
plt.ylabel('Sepal Length (cm)')
plt.show()


绘制训练集上的损失。

plt.figure()
plt.plot(losses)
plt.title('Loss on Training Set')
plt.xlabel('#epoch')
plt.ylabel('Cross Entropy')
plt.show()


绘制测试集上的准确率。

plt.figure()
plt.plot(accs)
plt.title('Accurary on Testing Set')
plt.xlabel('#epoch')
plt.ylabel('Accurary')
plt.show()
相关文章
|
机器学习/深度学习 算法 TensorFlow
树叶识别系统python+Django网页界面+TensorFlow+算法模型+数据集+图像识别分类
树叶识别系统python+Django网页界面+TensorFlow+算法模型+数据集+图像识别分类
203 1
|
1月前
|
数据采集 TensorFlow 算法框架/工具
【大作业-03】手把手教你用tensorflow2.3训练自己的分类数据集
本教程详细介绍了如何使用TensorFlow 2.3训练自定义图像分类数据集,涵盖数据集收集、整理、划分及模型训练与测试全过程。提供完整代码示例及图形界面应用开发指导,适合初学者快速上手。[教程链接](https://www.bilibili.com/video/BV1rX4y1A7N8/),配套视频更易理解。
39 0
【大作业-03】手把手教你用tensorflow2.3训练自己的分类数据集
|
8天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
28 3
|
6月前
|
机器学习/深度学习 数据可视化 TensorFlow
基于tensorflow深度学习的猫狗分类识别
基于tensorflow深度学习的猫狗分类识别
210 1
|
6月前
|
机器学习/深度学习 编译器 TensorFlow
基于Python TensorFlow Estimator的深度学习回归与分类代码——DNNRegressor
基于Python TensorFlow Estimator的深度学习回归与分类代码——DNNRegressor
|
11月前
|
机器学习/深度学习 存储 TensorFlow
Azure 机器学习 - 使用 Visual Studio Code训练图像分类 TensorFlow 模型
Azure 机器学习 - 使用 Visual Studio Code训练图像分类 TensorFlow 模型
136 0
|
机器学习/深度学习 人工智能 TensorFlow
基于 Tensorflow 的蘑菇分类
基于 Tensorflow 的蘑菇分类
|
机器学习/深度学习 TensorFlow 算法框架/工具
TensorFlow HOWTO 4.1 多层感知机(分类)
TensorFlow HOWTO 4.1 多层感知机(分类)
73 0
|
机器学习/深度学习 TensorFlow 算法框架/工具
TensorFlow HOWTO 5.1 循环神经网络(时间序列)
TensorFlow HOWTO 5.1 循环神经网络(时间序列)
50 0
|
TensorFlow 算法框架/工具
TensorFlow HOWTO 4.2 多层感知机回归(时间序列)
TensorFlow HOWTO 4.2 多层感知机回归(时间序列)
72 0

热门文章

最新文章