基于hough变换的条形码数字分割和数字识别matlab仿真

简介: 基于hough变换的条形码数字分割和数字识别matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

57c58bded9b53f94fb794cab1c3fefee_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
19c703aa86ce30a6f6d6914606547258_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
d90042f814a9965cb6107cd367f704ff_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
296be214da6eba6315dce6b06c51d226_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
ae7ea26ad1c3318cd8fe075d805ac84d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
9e5c794c527c8a5f93188d0cccca9b0e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   霍夫变换是一种特征提取(feature extraction),被广泛应用在图像分析(image analysis)、计算机视觉(computer vision)以及数位影像处理(digital image processing)。霍夫变换是用来辨别找出物件中的特征,例如:线条。他的算法流程大致如下,给定一个物件、要辨别的形状的种类,算法会在参数空间(parameter space)中执行投票来决定物体的形状,而这是由累加空间(accumulator space)里的局部最大值(local maximum)来决定。
   现在广泛使用的霍夫变换是由RichardDuda和PeterHart在公元1972年发明,并称之为广义霍夫变换(generalizedHoughtransform),广义霍夫变换和更早前1962年的PaulHough的专利有关。经典的霍夫变换是侦测图片中的直线,之后,霍夫变换不仅能识别直线,也能够识别任何形状,常见的有圆形、椭圆形。1981年,因为DanaH.Ballard的一篇期刊论文"Generalizing the Hough transform to detect arbitrary shapes",让霍夫变换开始流行于计算机视觉界。

一条直线可以用如下的方程来表示:y=kx+b,k是直线的斜率,b是截距。

     图像是一个个离散的像素点构成的,如果在图像中有一条直线,那也是一系列的离散点构成的。那么怎样检测这些离散的点构成了直线呢?

    我们再看上面的直线方程:y=kx+b,(x,y)就是点。我们转换下变成:b=-kx+y。我们是不是也可以把(k,b)看作另外一个空间中的点?这就是k-b参数空间。

46b240b553785619c792f85ab5cc2c12_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    我们看到,图1中,在x-y图像空间中的一个点,变成了k-b参数空间中的一条直线,而x-y图像空间中的2点连成的直线,变成了k-b参数空间中的一个交点。

   如果x-y图像空间中有很多点在k-b空间中相交于一点,那么这个交点就是我们要检测的直线。这就是霍夫变换检测直线的基本原理。

   当然,有一个问题需要注意,图像空间中如果一条直线是垂直的,那么斜率k是没有定义的(或者说无穷大)。为了避免这个问题,霍夫变换采用了另一个参数空间:距离-角度参数空间。

b96ea9b968f3181d681f803ab90e20bc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   相反,图片上的点在霍夫空间就可以表示为线,我们要检测线条的话,就可以把图像上的每个点转换到霍夫空间去,找到霍夫空间上线条相交的点,就可以确定参数m, b.

3.MATLAB核心程序

Thetab=90-Thetaa;
bw1=imrotate(B,Thetab,'bicubic');
figure(7);
imshow(bw1);title('纠正后的二值图')
BW1=imrotate(BW,Thetab,'bicubic');
figure(8);
imshow(BW1);title('纠正后的边缘图')
[p,q]=size(BW1);
m=0;
for y=ceil(p/2):p
    for x=1:q
        if BW1(y,x)==1
            m=m+1
        else m=m
        end
    end
    if m<60
        y1=y
        break
    else m=0
    end
end
n=0;
for yl=floor(p/2):-1:1
    for xl=1:q
        if BW1(yl,xl)==1
            n=n+1
        else n=n
        end
    end
    if n<60
        y2=yl
        break
    else n=0
    end
end
BW2=imcrop(BW1,[1,y2,q,y1-y2]);
figure(9);imshow(BW2);title('上下分割')
bw2=imcrop(bw1,[1,y2,q,y1-y2]);
figure(10);imshow(bw2);title('上下分割')
[a,b]=size(BW2);
k=0
for yi=1:a
    for xi=1:ceil(b/3)
        if BW2(yi,xi)==1
            k=k+1
            A(k)=xi 
        else k=k
        end
    end
    K=k
    for c=1:K-4
        L1=A(c+4)-A(c+3);
        L2=A(c+3)-A(c+2);
        L3=A(c+2)-A(c+1);
        L4=A(c+1)-A(c);
        L=(L1+L2+L3)/3
        if (L2/L1)>0.5&(L2/L1)<1.5&(L3/L2)>0.5&(L3/L2)<1.5&(L4/L)>9
            C=c
            xx1=A(C)+1
            break
        else k=0
            continue
        end
    end  
end
..............................................................................
k = 1;
for i=1:59  
    if rem(i,2)
        for j=1:bar_int(i)  
            bar_01(k) = 1;
            k = k+1;
        end
    else
        for j=1:bar_int(i)  
            bar_01(k) = 0;
            k = k+1;
        end
    end
end
if ((bar_01(1)&&~bar_01(2)&&bar_01(3))...   
        &&(~bar_01(46)&&bar_01(47)&&~bar_01(48)&&bar_01(49)&&~bar_01(50))...   
        &&(bar_01(95)&&~bar_01(94)&&bar_01(93)))    
    l = 1;
    for i=1:6  
        bar_left(l) = 0;
        for k=1:7
            bar_left(l) = bar_left(l)+bar_01(7*(i-1)+k+3)*(2^(7-k));
        end
        l = l+1;
    end
    l = 1;
    for i=1:6   
        bar_right(l) = 0;
        for k=1:7
            bar_right(l) = bar_right(l)+bar_01(7*(i+6)+k+1)*(2^(7-k));
            k = k-1;
        end
        l = l+1;
    end
end
相关文章
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
102 80
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的64QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统基于MATLAB 2022a仿真,适用于高要求的图像传输场景(如无人机、视频监控等),采用64QAM调制解调、扩频技术和Turbo译码提高抗干扰能力。发射端包括图像源、64QAM调制器、扩频器等;接收端则有解扩器、64QAM解调器和Turbo译码器等。核心程序实现图像传输的编码、调制、信道传输及解码,确保图像质量和传输可靠性。
26 16
|
19小时前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
18 5
|
18小时前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
226 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
142 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
111 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章