7个好用的Python效率工具

简介: Python效率工具

为了提高效率,我们在平时工作中常会用到一些Python的效率工具,Python作为比较老的编程语言,它可以实现日常工作的各种自动化。为了更便利的开发项目,这里给大家推荐几个Python的效率工具。

1、Pandas-用于数据分析

Pandas是一个强大的分析结构化数据的工具集;它的使用基础是Numpy(提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能。

1、安装包

$ pip install pandas

2、进入python的交互式界面

$ python -i

3、使用Pandas>>> import pandas as pd>>> df = pd.DataFrame() >>> print(df)

4、输出结果

Empty DataFrame
Columns: []
Index: []
2、Selenium-自动化测试

Selenium是一个用于Web应用程序测试的工具,可以从终端用户的角度来测试应用程序。通过在不同浏览器中运行测试,更容易发现浏览器的不兼容性。并且它适用许多浏览器。

可以通过打开浏览器并访问Google的主页做一个简单的测试:

from selenium import webdriver
import time

browser = webdriver.Chrome(executable_path ="C:\Program Files (x86)\Google\Chrome\chromedriver.exe")

website_URL ="https://www.google.co.in/"
brower.get(website_URL)

refreshrate = int(3) #每3秒刷新一次Google主页。
# 它会一直运行,直到你停掉编译器。
while True:

   time.sleep(refreshrate) 
   browser.refresh() 

3、 Flask——微型Web框架

Flask是一个轻量级的可定制框架,使用Python语言编写,较其他同类型框架更为灵活、轻便、安全且容易上手。Flask是目前十分流行的web框架。开发者可以使用Python语言快速实现一个网站或Web服务。

from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():

return 'Hello, World!' 

4、 Scrapy——页面爬取

Scrapy能够为你提供强大支持,使你能够精确地从网站中爬取信息。是非常实用。

现在基本上大部分开发者都会利用爬虫工具来实现爬取工作的自动化。所以编写爬虫编码时就可以用到这个Scrapy。

启动Scrapy Shell也是十分的简单:

scrapy shell
我们可以试着提取百度主页上搜索按钮的值,首先要找到按钮使用的类,一个inspect element显示该类为“ bt1”。

具体执行以下操作:

response = fetch("https://baidu.com")

response.css(".bt1::text").extract_first() 
==> "Search" 

想更加系统高效的学好Python推荐给大家一个gzh——【Python编程学习圈】,每天都分享有技术干货文章供阅读学习,关注即可免费领取整套Python入门到进阶的学习资料以及教程,感兴趣的话抓紧时间吧。

5、 Requests——做API调用

Requests是一个功能强大的HTTP库。有了它可以轻松地发送请求。无需手动向网址添加查询字符串。除此之外还有许多功能,比如authorization处理、JSON / XML解析、session处理等。

官方例子:

r = requests.get(' https://api.github.com/user', auth=('user', 'pass'))
r.status_code
200
r.headers['content-type']
'application/json; charset=utf8'
r.encoding
'utf-8'
r.text
'{"type":"User"...'
r.json()
{'private_gists': 419, 'total_private_repos': 77, ...}
6、Faker-用于创建假数据

Faker是一个Python包,为您生成假数据。无论是需要引导数据库、创建好看的 XML 文档、填写您的持久性来强调测试它,还是从生产服务中获取的同名数据,Faker 都适合您

有了它,你可以非常快速地生成假的names、addresses、descriptions等!以下脚本为例,我创建一个联系人条目,包含了姓名、地址和一些描述文本:

安装:

pip install Faker

from faker import Faker
fake = Faker()
fake.name()
fake.address()
fake.text()
7、 Pillow-进行图像处理

Python图像处理工具——Pillow有相当强大的图像处理功能。当平时需要做图像处理时就可以用到,毕竟作为开发人员,应该选择功能更强大的图片处理工具。

简单示例:

from PIL import Image, ImageFilter
try:

   original = Image.open("Lenna.png") 
   blurred = original.filter(ImageFilter.BLUR) 
   original.show() 
   blurred.show() 
   blurred.save("blurred.png") 

except:

   print "Unable to load image" 

有效的工具可以帮助我们更快捷地完成工作任务,所以就给大家分享几个认为好用的工具,也希望这7个Python的效率工具能够帮助到你。

目录
相关文章
|
4月前
|
数据挖掘 测试技术 API
8个非常好用的 Python 效率工具
8个非常好用的 Python 效率工具
48 0
|
12天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
11天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
23天前
|
机器学习/深度学习 数据挖掘 程序员
探索Python编程:从基础到进阶的旅程
在这篇文章中,我们将一同踏上一场激动人心的Python编程之旅。无论你是初学者还是有一定经验的开发者,这里都有适合你的内容。文章分为三个部分:首先是“启程前的准备”,我们会介绍Python的安装和基本工具;其次是“旅途中的风景”,将通过实际代码示例深入探讨Python的核心概念;最后,“到达目的地”会带你了解如何将所学知识应用于实际项目。让我们开始吧!
|
18天前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
131 59
|
12天前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
36 10
|
15天前
|
机器学习/深度学习 人工智能 Java
Python 语言:强大、灵活与高效的编程之选
本文全面介绍了 Python 编程语言,涵盖其历史、特点、应用领域及核心概念。从 1989 年由 Guido van Rossum 创立至今,Python 凭借简洁的语法和强大的功能,成为数据科学、AI、Web 开发等领域的首选语言。文章还详细探讨了 Python 的语法基础、数据结构、面向对象编程等内容,旨在帮助读者深入了解并有效利用 Python 进行编程。
|
14天前
|
机器学习/深度学习 人工智能 数据挖掘
探索Python编程的奥秘
在数字世界的海洋中,Python如同一艘灵活的帆船,引领着无数探险者穿梭于数据的波涛之中。本文将带你领略Python编程的魅力,从基础语法到实际应用,一步步揭开Python的神秘面纱。
34 12
|
13天前
|
IDE 程序员 开发工具
Python编程入门:打造你的第一个程序
迈出编程的第一步,就像在未知的海洋中航行。本文是你启航的指南针,带你了解Python这门语言的魅力所在,并手把手教你构建第一个属于自己的程序。从安装环境到编写代码,我们将一步步走过这段旅程。准备好了吗?让我们开始吧!
|
13天前
|
关系型数据库 开发者 Python
Python编程中的面向对象设计原则####
在本文中,我们将探讨Python编程中的面向对象设计原则。面向对象编程(OOP)是一种通过使用“对象”和“类”的概念来组织代码的方法。我们将介绍SOLID原则,包括单一职责原则、开放/封闭原则、里氏替换原则、接口隔离原则和依赖倒置原则。这些原则有助于提高代码的可读性、可维护性和可扩展性。 ####