基于FastICA算法的混合信号解混合信号恢复仿真

简介: 基于FastICA算法的混合信号解混合信号恢复仿真

1.算法描述

   独立成分分析(Independent Component Analysis,ICA)是近年来提出的非常有效的数据分析工具,它主要用来从混合数据中提取出原始的独立信号。它作为信号分离的一种有效方法而受到广泛的关注。近几年出现了一种快速ICA算法(Fast ICA),该算法是基于定点递推算法得到的,它对任何类型的数据都适用,同时它的存在对运用ICA分析高维的数据成为可能。又称固定点(Fixed-Point)算法,是由芬兰赫尔辛基大学Hyvärinen等人提出来的。是一种快速寻优迭代算法,与普通的神经网络算法不同的是这种算法采用了批处理的方式,即在每一步迭代中有大量的样本数据参与运算。但是从分布式并行处理的观点看该算法仍可称之为是一种神经网络算法。FastICA算法有基于四阶累积量、基于似然最大、基于负熵最大等形式。此外,该算法采用了定点迭代的优化算法,使得收敛更加快速、稳健。

1)对观测信号去均值是ICA算法最基本和最必须的预处理步骤,其处理过程是从观测中减去信号的均值向量,使得观测信号成为零均值变量。该预处理只是为了简化 ICA算法,并不意味着均值不能估计出来。

2)一般情况下所获得的数据都具有相关性,通常都要求对数据进行初步的白化或球化处理,因为白化处理可去除各观测信号之间的相关性,从而简化后续独立分量的提取过程。通常情况下,数据进行白化处理与不对数据进行白化处理相比,算法的收敛性较好,有更好的稳定性。

3)对多个独立分量的估计,需要将最大非高斯性的方法加以扩展。对应于不同独立分量的向量在白化空间中应是正交的,算法第6步用压缩正交化保证分离出来的是不同的信号,但是该方法的缺点是第1个向量的估计误差会累计到随后向量的估计上。

   简单地说快速ICA算法通过三步完成:首先,对观测信号去均值;然后,对去均值后的观测信号白化处理;前两步可以看成是对观测信号的预处理,通过去均值和白化可以简化ICA算法。最后,独立分量提取算法及实现流程见流程图。

 FastICA算法,又称不动点(Fixed-Point)算法,是由芬兰赫尔辛基大学Hyvärinen等人提出来的。是一种快速寻优迭代算法,与普通的神经网络算法不同的是这种算法采用了批处理的方式,即在每一步迭代中有大量的样本数据参与运算。但是从分布式并行处理的观点看该算法仍可称之为是一种神经网络算法。
   FastICA算法有基于峭度、基于似然最大、基于负熵最大等形式,这里,我们介绍基于负熵最大的FastICA算法(可以有效地把不动点迭代所带来的优良算法特性与负熵所带来的更好统计特性结合起来)。它以负熵最大作为一个搜寻方向,可以实现顺序地提取独立源,充分体现了投影追踪(Projection Pursuit)这种传统线性变换的思想。此外,该算法采用了定点迭代的优化算法,使得收敛更加快速、稳健。
   因为FastICA算法以负熵最大作为一个搜寻方向,因此先讨论一下负熵判决准则。由信息论理论可知:在所有等方差的随机变量中,高斯变量的熵最大,因而我们可以利用熵来度量非高斯性,常用熵的修正形式,即负熵。根据中心极限定理,若一随机变量由许多相互独立的随机变量之和组成,只要具有有限的均值和方差,则不论其为何种分布,随机变量较更接近高斯分布。换言之,较的非高斯性更强。因此,在分离过程中,可通过对分离结果的非高斯性度量来表示分离结果间的相互独立性,当非高斯性度量达到最大时,则表明已完成对各独立分量的分离[1]。

   FastICA算法的方法输出向量,在排列顺序的时候可能出现颠倒和输出信号幅度发生变化。这主要是由于ICA的算法存在2个内在的不确定性导致的:

1)输出向量排列顺序的不确定性,即无法确定所提取的信号对应原始信号源的哪一个分量;

2)输出信号幅度的不确定性,即无法恢复到信号源的真实幅度。

但由于主要信息都包含在输出信号中,这2种不确定性并不影响其应用。

8c9aa693485d46ab2dd46769c179e94d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
dd61af8910be88cae854c36d5816f61e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.仿真效果预览
matlab2022a仿真结果如下:

30e9a90c31f6f6fcd042b1ab8bb6e70a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
261ecba63a5b4f8fa903359017279a62_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
60232d73d8497b3695ae876c2e3638c3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

for i=1:M
    X(i,:)=X(i,:)-average(i)*ones(1,T); 
end
%---------白化/球化------
Cx = cov(X',1);    %计算协方差矩阵Cx
[eigvector,eigvalue] = eig(Cx); %计算Cx的特征值和特征向量
W=eigvalue^(-1/2)*eigvector';   %白化矩阵
Z=W*X;   %正交矩阵
 
%----------迭代-------
Maxcount=10000;        %最大迭代次数
Critical=0.00001;   %判断是否收敛
m=M;                %需要估计的分量的个数
W=rand(m);
for n=1:m  
    WP=W(:,n);  %初始权矢量(任意)
    count=0;
    LastWP=zeros(m,1);
    W(:,n)=W(:,n)/norm(W(:,n));
    while abs(WP-LastWP)&abs(WP+LastWP)>Critical
        count=count+1;   %迭代次数
        LastWP=WP;      %上次迭代的值
       % WP=1/T*Z*((LastWP'*Z).^3)'-3*LastWP;
        for i=1:m     
WP(i)=mean(Z(i,:).*(tanh((LastWP)'*Z)))-(mean(1-(tanh((LastWP))'*Z).^2)).*LastWP(i);
        end
        WPP=zeros(m,1);
        for j=1:n-1
            WPP=WPP+(WP'*W(:,j))*W(:,j);
        end
        WP=WP-WPP;
        WP=WP/(norm(WP));
        
        if count==Maxcount
            fprintf('未找到相应的信号'); 
            return; 
        end
    end
    W(:,n)=WP;
end
Z=W'*Z;
end
相关文章
|
30天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
15天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
16天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
17天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
16天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
16天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
35 3
|
27天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
28天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
21天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
下一篇
无影云桌面