机器学习实战︱基于多层感知机模型和随机森林模型的某地房价预测

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 在现实生活中,除了分类问题外,也存在很多需要预测出具体值的回归问题,例如年龄预测、房价预测、股价预测等。相比分类问题而言,回归问题输出类型为一个连续值,如下表所示为两者的区别。在本文中,将完成房价预测这一回归问题。

640.jpg


640.jpg


■ 分类问题与回归问题区别

对于一个回归问题,从简单到复杂,可以采取的模型有多层感知机、SVR、回归森林算法等,下面将介绍如何使用这些算法完成这一任务。

01、使用MLP实现房价预测

首先是载入需要的各种包以及数据集,与前面使用树模型等不同的地方在于,使用多层感知机模型需要对数据集的X和y都根据最大最小值进行归一化处理。下图所示程序使用了线性归一化的方法,即

640.png


这种归一化方法比较适用在数值比较集中的情况。这种方法有个缺陷,如max和min不稳定,很容易使得归一化结果不稳定,使得后续使用效果也不稳定,实际使用中可以用经验常量值来替代max和min。

sklearn库中提供了归一化的接口,如代码清单1所示为加载数据集并进行归一化处理的代码实现。

代码清单1 加载数据集并进行预处理操作

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_squared_error, mean_absolute_error
 
# 加载数据集并进行归一化预处理
def loadDataSet():
    boston_dataset = load_boston()
    X = boston_dataset.data
    y = boston_dataset.target
    y = y.reshape(-1, 1)
    # 将数据划分为训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
 
    # 分别初始化对特征和目标值的标准化器
    ss_X, ss_y = preprocessing.MinMaxScaler(), preprocessing.MinMaxScaler()
 
    # 分别对训练和测试数据的特征以及目标值进行标准化处理
    X_train, y_train = ss_X.fit_transform(X_train), ss_y.fit_transform(y_train)
    X_test, y_test = ss_X.transform(X_test), ss_y.transform(y_test)
    y_train, y_test = y_train.reshape(-1, ), y_test.reshape(-1, )
 
    return X_train, X_test, y_train, y_test

在预处理过数据集后,构建MLP模型,并设置模型的超参数,并在训练集上训练模型。

代码清单2 训练多层感知机模型

def trainMLP(X_train, y_train):
    model_mlp = MLPRegressor(
        hidden_layer_sizes=(20, 1), activation='logistic', solver='adam', alpha=0.0001, batch_size='auto',
        learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=5000, shuffle=True,
        random_state=1, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True,
        early_stopping=False, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
    model_mlp.fit(X_train, y_train)
    return model_mlp

如代码清单2所示,该模型的超参数较多,最重要的几个超参数为hidden_layer_sizes(隐藏层神经元个数,在本次实验当中隐藏层分别为5和1),activations(激活函数,可以选择relu、logistic、tanh等),solver(优化方法,即sgd、adam等),以及与优化方法相关的learning_rate(学习率),momentum(动量)等,设置完模型参数后,使用fit函数完成训练过程。

代码清单3 测试模型效果

def test(model, X_test, y_test):
    y_pre = model.predict(X_test)
    print("The mean root mean square error of MLP-Model is {}".format(mean_squared_error(y_test, y_pre)**0.5))
    print("The mean squared error of MLP-Model is {}".format(mean_squared_error(y_test, y_pre)))
    print("The mean absolute error of MLP-Model is {}".format(mean_absolute_error(y_test, y_pre)))

训练完成后在测试集上验证模型的效果,如代码清单3所示,不同于分类模型有准确率召回率等指标,回归模型验证模型效果通常采用MSE,MAE、RMSE等。

  • MSE(Mean Squared Error)叫做均方误差
  • 640.png

  • MAE(Mean Absolute Error)为平均绝对误差,是绝对误差的平均值,能更好地反映预测值误差的实际情况
  • 640.png

  • RMSE(Root Mean Square Error)为均方根误差,是用来衡量观测值同真值之间的偏差
  • 640.png

以上三项指标的值越小,则表示在测试集上预测的结果与真实结果之间的偏差越小,模型拟合效果越好。

如代码清单4所示,在主函数中依次调用上述函数,完成导入数据集、训练、预测的全过程。

代码清单4 构建main函数

if __name__ == '__main__':
    X_train, X_test, y_train, y_test = loadDataSet()
    # 训练MLP模型
    model = trainMLP(X_train, y_train)
    test(model, X_test, y_test)

最终可得输出如下图1所示。

640.png


图1 MLP模型预测效果

改变实验中的超参数,例如隐藏层的神经元个数,可以得到不同的模型以及这些模型在测试集上的得分。如表2所示,当神经元个数为10时,三项指标均获得了最小值,因此可以固定神经元个数为10,再调整其他参数,例如激活函数、优化方法等。

【小技巧】在难以确定参数时,可以将模型在训练集和测试集的误差都打印出来,当训练集误差远远大于测试集误差时,可能会存在过拟合的问题,应当减少参数数目,即神经元的个数。当训练集的误差与测试集误差都很大时,存在欠拟合的问题,应当增加神经元的个数。

表2 不同神经元个数的预测结果


640.png

02、使用随机森林模型实现房价预测

如代码清单5、代码清单6所示,导入与随机森林回归模型有关的包,并新增使用随机森林训练模型的函数,修改主函数,其他部分保持不变。

代码清单5 使用随机森林模型进行训练

def trainRF(X_train, y_train):
    model_rf = RandomForestRegressor(n_estimators=10000)
    model_rf.fit(X_train, y_train)
    return model_rf

代码清单6 修改main函数内容

if __name__ == '__main__':
    X_train, X_test, y_train, y_test = loadDataSet()
    # 训练RF模型
    model = trainRF(X_train, y_train)
    test(model, X_test, y_test)

最终得到如图2所示为命令行输出结果。

640.png


图2 随机森林模型预测结果

下面调节n_estimators的数目,并记录相应的评价指标大小。如表3所示为一个随机森林中决策数目发生变化时评价指标的变化。可以发现,随着决策树数目的上升,各项指标都变得更优,一般而言,一个森林中决策树的个数越多,模型预测的准确率越高,但相应的会消耗更多的计算资源,因此在实际应用当中应当权衡效率与正确性这两点。

表3 随机森林不同决策树数目预测结果


640.png

目录
相关文章
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
2月前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
81 5
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
109 0
|
2月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
72 0
|
3月前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
119 2
|
3月前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
164 1
|
3月前
|
数据采集 机器学习/深度学习 TensorFlow
声纹识别实战:从数据采集到模型训练
【10月更文挑战第16天】声纹识别技术通过分析个人的语音特征来验证其身份,具有无接触、便捷的特点。本文将带你从零开始,一步步完成声纹识别系统的构建,包括数据采集、音频预处理、特征提取、模型训练及评估等关键步骤。我们将使用Python语言和相关的科学计算库来进行实践。
493 0
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
145 4
|
5天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
58 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
21天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
43 2

热门文章

最新文章

相关产品

  • 人工智能平台 PAI