基于PSO的最优路径优化仿真,带GUI界面,可以设置粒子数目,迭代次数,优化目标,输出最优解和最优路径

简介: 基于PSO的最优路径优化仿真,带GUI界面,可以设置粒子数目,迭代次数,优化目标,输出最优解和最优路径

1.算法描述

    PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitnessvalue),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。

  粒子群优化算法(PSO),粒子群中的每一个粒子都代表一个问题的可能解, 通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。

   在求解TSP这种整数规划问题的时候, PSO显然与ACO不同, PSO需要对算法本身进行一定的修改, 毕竟PSO刚开始是应用在求解连续优化问题上的. 

    在路径规划中,我们将每一条路径规划为一个粒子,每个粒子群群有 n 个粒 子,即有 n 条路径,同时,每个粒子又有 m 个染色体,即中间过渡点的个数,每 个点(染色体)又有两个维度(x,y),在代码中用 posx 和 posy 表示一个种群。 通过每一代的演化,对粒子群进行演化操作,选择合适个体(最优路径)。

d04be00acba7e734c4f28125d2b7307e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

最终算法伪代码如下:

初始化: 每个粒子获得一个随机解和一个随机的SS (命名为速度)

For 在位置 X_{id} 的所有粒子, 计算新的位置 X_{id}':

计算 P_{id} 与 X_{id} 之间的差 A = P_{id} - X_{id}, 其中 A 为 BSS

计算 B = P_{gd} - X_{id}, 其中 B 为 BSS

根据速度更新公式计算新的速度 V_{id}', 并将 V_{id}' 转换为一个 BSS

计算新的解 X_{id}' = X_{id} + V_{id} (也就是 V_{id} 作用在 X_{id} 上)

更新 P_{id} 如果新的解更好

更新 P_{gd} 若出现新的全局最好的解

2.仿真效果预览
matlab2022a仿真结果如下:

ca287b858b3539c1d07624c1ed5f6549_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
38c767676ce5c864fc5d7a2e5bf14f6b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

    a1=Pb(1);
    a2=1;
    for i=1:m
        if a1>=Pb(i)
            a1=Pb(i);
            a2=i;
        end
    end
    nummin=a2;
    Gb(N)=Pb(nummin);          %当前群体最优长度
    for i=1:m
      %% 与个体最优进行交叉
      c1=round(rand*(n-2))+1;  %在[1,n-1]范围内随机产生一个交叉位
      c2=round(rand*(n-2))+1;
      while c1==c2
          c1=round(rand*(n-2))+1;  %在[1,n-1]范围内随机产生一个交叉位
          c2=round(rand*(n-2))+1;
      end   
      chb1=min(c1,c2);
      chb2=max(c1,c2);
      cros=Tour_pbest(i,chb1:chb2); %交叉区域矩阵
      ncros=size(cros,2);       %交叉区域元素个数
      %删除与交叉区域相同元素
      for j=1:ncros
          for k=1:n
              if xnew1(i,k)==cros(j)
                 xnew1(i,k)=0;
                  for t=1:n-k
                      temp=xnew1(i,k+t-1);
                      xnew1(i,k+t-1)=xnew1(i,k+t);
                      xnew1(i,k+t)=temp;
                  end                 
              end
          end
      end
      xnew=xnew1;
      %插入交叉区域
      for j=1:ncros
          xnew1(i,n-ncros+j)=cros(j);
      end
      %判断产生新路径长度是否变短
      dist=0;
      for j=1:n-1
          dist=dist+D(xnew1(i,j),xnew1(i,j+1));
      end
      dist=dist+D(xnew1(i,1),xnew1(i,n));
      if F(i)>dist
          x(i,:)=xnew1(i,:);
      end
      %% 与全体最优进行交叉
      c1=round(rand*(n-2))+1;  %在[1,n-1]范围内随机产生一个交叉位
      c2=round(rand*(n-2))+1;
      while c1==c2
          c1=round(rand*(n-2))+1;  %在[1,n-1]范围内随机产生一个交叉位
          c2=round(rand*(n-2))+1;
      end   
      chb1=min(c1,c2);
      chb2=max(c1,c2);
      cros=Tour_gbest(chb1:chb2); %交叉区域矩阵
      ncros=size(cros,2);       %交叉区域元素个数
      %删除与交叉区域相同元素
      for j=1:ncros
          for k=1:n
              if xnew1(i,k)==cros(j)
                 xnew1(i,k)=0;
                  for t=1:n-k
                      temp=xnew1(i,k+t-1);
                      xnew1(i,k+t-1)=xnew1(i,k+t);
                      xnew1(i,k+t)=temp;
                  end                 
              end
          end
      end
      xnew=xnew1;
      %插入交叉区域
      for j=1:ncros
          xnew1(i,n-ncros+j)=cros(j);
      end
      %判断产生新路径长度是否变短
      dist=0;
      for j=1:n-1
          dist=dist+D(xnew1(i,j),xnew1(i,j+1));
      end
      dist=dist+D(xnew1(i,1),xnew1(i,n));
      if F(i)>dist
          x(i,:)=xnew1(i,:);
      end
      %% 进行变异操作
      c1=round(rand*(n-1))+1;   %在[1,n]范围内随机产生一个变异位
      c2=round(rand*(n-1))+1;
      temp=xnew1(i,c1);
      xnew1(i,c1)=xnew1(i,c2);
      xnew1(i,c2)=temp;
       %判断产生新路径长度是否变短
      dist=0;
      for j=1:n-1
          dist=dist+D(xnew1(i,j),xnew1(i,j+1));
      end
      dist=dist+D(xnew1(i,1),xnew1(i,n));
      %dist=dist(xnew1(i,:),D);
      if F(i)>dist
          x(i,:)=xnew1(i,:);
      end
    end
  %  F=(x,C,D)         %计算种群适应度 
    %xuhao=xulie(F)           %最小适应度种群序号
    a1=F(1);
    a2=1;
    for i=1:m
       if a1>=F(i)
            a1=F(i);
            a2=i;
        end
    end
    xuhao=a2;
相关文章
|
5月前
|
算法 调度
基于变异混合蛙跳算法的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
**摘要:** 实现变异混合蛙跳算法的MATLAB2022a版车间调度优化程序,支持动态调整工件和机器数,输出甘特图。核心算法结合SFLA与变异策略,解决Job-Shop Scheduling Problem,最小化总完成时间。SFLA模拟蛙群行为,分组进行局部搜索和全局信息交换。变异策略增强全局探索,避免局部最优。程序初始化随机解,按规则更新,经多次迭代和信息交换后终止。
|
5月前
|
算法 调度 决策智能
基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图
这是一个使用MATLAB2022a实现的自适应遗传算法解决车间调度问题的程序,能调整工件数和机器数,输出甘特图和适应度收敛曲线。程序通过编码初始化、适应度函数、遗传操作(选择、交叉、变异)及自适应机制进行优化,目标如最小化完工时间。算法在迭代过程中动态调整参数,以提升搜索效率和全局优化。
|
5月前
|
算法 调度
基于PPNSA+扰动算子的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
`MATLAB2022a`仿真实现PPNSA+扰动算子的车间调度优化,支持工件和机器数量调整,输出甘特图与收敛曲线。算法针对JSSP,采用启发式策略应对NP难问题,最小化最大完工时间。[图:算法流程示意图]
|
6月前
|
算法 Windows
R语言广义二次跳跃、非线性跳跃扩散过程转移函数密度的估计及其应用
R语言广义二次跳跃、非线性跳跃扩散过程转移函数密度的估计及其应用
|
传感器
通过求解数学模型来选择编码节点的最佳数量和位置(Matlab代码实现)
通过求解数学模型来选择编码节点的最佳数量和位置(Matlab代码实现)
通过求解数学模型来选择编码节点的最佳数量和位置(Matlab代码实现)
|
算法 测试技术
向外搜索以增加种群多样性的优化算法(Matlab代码实现)
向外搜索以增加种群多样性的优化算法(Matlab代码实现)
|
监控
【状态估计】基于随机方法优化PMU优化配置(Matlab代码实现)
【状态估计】基于随机方法优化PMU优化配置(Matlab代码实现)
|
机器学习/深度学习
采用附加动量法和自适应学习率设计来改进bp神经网络的迭代速度,如果不迭代学习率会提高精度;迭代学习率(自适应)会加快收敛,但精度降低(Matlab代码实现)
采用附加动量法和自适应学习率设计来改进bp神经网络的迭代速度,如果不迭代学习率会提高精度;迭代学习率(自适应)会加快收敛,但精度降低(Matlab代码实现)
125 0
|
机器学习/深度学习 传感器 资源调度
【优化控制】基于策略迭代算法求解重构机械臂容错跟踪控制优化问题含Matlab代码
【优化控制】基于策略迭代算法求解重构机械臂容错跟踪控制优化问题含Matlab代码
|
机器学习/深度学习 传感器 算法
【粒子群算法】基于曲线递增策略的自适应粒子群算法(CIPSO)求解单目标优化问题附matlab代码
【粒子群算法】基于曲线递增策略的自适应粒子群算法(CIPSO)求解单目标优化问题附matlab代码