【改进粒子群优化算法】基于惯性权重和学习因子动态调整的粒子群算法【期刊论文复现】(Matlab代码实现)

简介: 【改进粒子群优化算法】基于惯性权重和学习因子动态调整的粒子群算法【期刊论文复现】(Matlab代码实现)

效果图:

 

💥1 概述

部分代码:

摘要:针对传统的粒子群算法易发生早熟收敛、在寻优过程中易陷入局部最优等问题,提出了一种基于惯性权重和学习因子动态调整的粒子群算法,该算法通过改进惯性权重和学习因子参数以优化算法。随着算法的不断迭代,其惯性权重以及学习因子随着迭代次数的增加而动态优化,从而平衡其局部寻优能力与全局搜索能力。实验结果表明,改进后的算法在收敛速度以及收敛精度上比传统粒子群算法更优,能改善早熟收敛问题。


关键词:


粒子群算法;动态调整;迭代;优化;惯性权重;学习因子;


📚2 运行结果

部分代码:

for i=1:nPop%种群位置、速度、适应度初始化
    pop(i).Position = unifrnd(VarMin, VarMax, VarSize);
    pop(i).Velocity = unifrnd(Vmin, Vmax, VarSize);
    pop(i).Cost = fun(pop(i).Position,index);
    if pop(i).Cost < pBestSol.Cost 
       pBestSol = pop(i);%个体适应度最佳
    end
end
gBestSol = pBestSol;
    for it=1:MaxIt
        for i=1:nPop
        w = 1+(1-0.7).*(it.^2)/(MaxIt^2);
        c1 = (1-0.7).*it/MaxIt+0.7;
        c2 = (1-0.7).*it/MaxIt+0.7;
        %速度更新    
        pop(i).Velocity = w.*pop(i).Velocity+c1.*rand(VarSize).*(pBestSol.Position-pop(i).Position)+c2.*rand(VarSize).*(gBestSol.Position-pop(i).Position);
        %速度边界处理
        pop(i).Velocity = max(pop(i).Velocity, Vmin);
        pop(i).Velocity = min(pop(i).Velocity, Vmax);
        %位置更新
        pop(i).Position = pop(i).Position+pop(i).Velocity;
        %位置边界处理
        pop(i).Position = max(pop(i).Position, VarMin);
        pop(i).Position = min(pop(i).Position, VarMax);
        %适应度值更新
        pop(i).Cost = fun(pop(i).Position,index);
        %更新局部最优
        if pop(i).Cost < pBestSol.Cost
            pBestSol = pop(i);
        %更新全局最优
        if pBestSol.Cost < gBestSol.Cost    
            gBestSol = pBestSol;
        end
        end
            BestCosts(it) = gBestSol.Cost;
            disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCosts(it))]);
    end    
    end
IPSO_polbelbest = pBestSol;

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]吴永红,曾志高,邓彬.基于惯性权重和学习因子动态调整的粒子群算法[J].湖南工业大学学报,2021,35(01):91-96.

🌈4 Matlab代码实现


相关文章
|
29天前
|
机器学习/深度学习 安全 算法
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-23(下)
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-23(下)
34 0
|
29天前
|
安全 搜索推荐 算法
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-23(上)
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-23(上)
30 0
|
29天前
|
自然语言处理 搜索推荐 算法
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-21(下)
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-21(下)
32 0
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-21(上)
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-21(上)
24 0
|
29天前
|
机器学习/深度学习 人工智能 算法
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-20(下)
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-20(下)
22 0
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
197 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
128 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
88 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章