《人工智能:计算Agent基础》——1.7 本书概述

简介:

本节书摘来自华章计算机《人工智能:计算Agent基础》一书中的第1章,第1.7节,作者:(加)David L.Poole,Alan K.Mackworth 更多章节内容可以访问云栖社区“华章计算机”公众号查看。

1.7 本书概述

本书的余下部分对由复杂性维度所定义的设计空间进行探索,对每个维度进行独立的合理考虑。
第2章主要分析图1-3中所提到的黑盒的内部结构,并讨论Agent的模块及层次分解。
第3章主要讨论决策未来行为的最简单情况,单个Agent用显式状态推理,没有不确定性,有要完成的目标,但是存在不确定期。在这种情况下,解决目标这个问题可以抽象成图中的路径搜索问题,并介绍了如何利用本领域的额外知识进行搜索。
第4、5章主要介绍如何利用特征。具体地说,第4章主要考虑怎样在给定的约束条件下找到可能的状态,这个约束是以变量形式表示的特征的值的配置。第5章阐述在所有状态都满足给定的约束集时,如何确定命题是否为真。
第6章主要讲述如何用不确定性进行推理。
第7章介绍如何从先前经验及数据中学习。它包括学习中最常见的情况,即利用特征的监督学习,从中可以学到被观察目标的特征集合。
第8章考虑规划问题,具体对状态及动作的基于特征的表达进行表示与推理。第9章介绍不确定性中的规划问题,第10章将这种状况扩展至多个Agent。
第11章介绍不确定性下的学习及强化学习。39
第12章介绍如何用个体及关系进行推理;第13章主要讨论的是本体,以及如何建立基于知识的系统;第14章说明个体及关系的推理如何与规划、学习及概率推理相结合。
第15章回顾人工智能的设计空间并说明本书提供的材料如何适应设计空间。同时也介绍一些关于建立智能系统的伦理思考。

目录
打赏
0
0
0
0
1408
分享
相关文章
Agent TARS:一键让AI托管电脑!字节开源PC端多模态AI助手,无缝集成浏览器与系统操作
Agent TARS 是一款开源的多模态AI助手,能够通过视觉解析网页并无缝集成命令行和文件系统,帮助用户高效完成复杂任务。
2700 13
Agent TARS:一键让AI托管电脑!字节开源PC端多模态AI助手,无缝集成浏览器与系统操作
模型即产品:万字详解RL驱动的AI Agent模型如何巨震AI行业范式
未来 AI 智能体的发展方向还得是模型本身,而不是工作流(Work Flow)。像 Manus 这样基于「预先编排好的提示词与工具路径」构成的工作流智能体,短期或许表现不错,但长期必然遇到瓶颈。这种「提示驱动」的方式无法扩展,也无法真正处理那些需要长期规划、多步骤推理的复杂任务。下一代真正的LLM智能体,则是通过「强化学习(RL)与推理(Reasoning)的结合」来实现的。
83 10
模型即产品:万字详解RL驱动的AI Agent模型如何巨震AI行业范式
一个支持阿里云百炼平台DeepSeek R1大模型(智能体)的Wordpress插件,AI Agent or Chatbot.
这是一个将阿里云DeepSeek AI服务集成到WordPress的聊天机器人插件,支持多轮对话、上下文记忆和自定义界面等功能。用户可通过短代码轻松添加到页面,并支持多种配置选项以满足不同需求。项目采用MIT协议授权,代码仓位于GitHub与Gitee。开发者Chi Leung为长期境外工作,代码注释以英文为主。适合需要在WordPress网站中快速部署AI助手的用户使用。
AI Agent:构建以数据为中心的智能体
在过去一年里大模型领域主要有两大领域的热点,一个是 LLM,几乎每月速度革新,大家关心的是效果和成本。另一个是 AI Agent,大家尝试解决各个领域应用问题,大家关心的是场景和竞争力。下面我们重点分享一下 AI Agent 的趋势和实践。
147 13
Manus:或将成为AI Agent领域的标杆
随着人工智能技术的飞速发展,AI Agent(智能体)作为人工智能领域的重要分支,正逐渐从概念走向现实,并在各行各业展现出巨大的应用潜力。在众多AI Agent产品中,Manus以其独特的技术优势和市场表现,有望成为该领域的标杆。作为资深AI工程师,本文将深入探讨Manus的背景知识、主要业务场景、底层原理、功能的优缺点,并尝试使用Java搭建一个属于自己的Manus助手,以期为AI Agent技术的发展和应用提供参考。
11596 19
27.4K Star!这个LLM应用宝库让你秒变AI全栈高手,RAG和AI Agent一网打尽!
想要快速入门LLM应用开发?想要了解最新的RAG和AI Agent技术?这个收获27.4K Star的开源项目集合了当下最热门的LLM应用案例,从简单的PDF对话到复杂的多智能体系统应该有尽有。无论你是AI开发新手还是经验丰富的工程师,这里都能找到适合你的项目!
清华、面壁提出创新AI Agent交互:能主动思考、预测需求
清华大学与面壁智能团队提出了一种创新的AI Agent交互模式,将基于大型语言模型的智能体从被动响应转变为主动协助。通过数据驱动的方法,研究团队开发了能够预测和主动发起任务的智能体,并创建了ProactiveBench数据集。实验结果显示,经过微调的模型在主动性方面取得了66.47%的F1分数,展示了该方法在人机协作中的潜力。论文链接:https://arxiv.org/abs/2410.12361
70 2

热门文章

最新文章