使用 Python 探索 感知机 算法

简介: 使用 Python 探索 感知机 算法

动动发财的小手,点个赞吧!

从理论到实践,我们将从简要的理论介绍开始研究感知机(器)学习方法,然后实现。

在这篇博文的最后,您将能够了解何时以及如何使用这种机器学习算法,清楚地了解它的所有优缺点。

1. 理论

1.1. 引言

感知器有其存在的生物学原因。我们的神经元不断从其他神经元接收能量,但只有在它们接收到的能量大于或等于一定量后,它们才会决定“激活”并发出自己的信号。

让我们从最后开始。给定一个 4 维输入,这个输入用 4 个不同的权重进行处理,总和进入激活函数,你就得到了结果。

讲的更清除一点,假设您有这张功能表(列)X1、X2、X3 和 X4。这些特征是 4 个不同的值,用于表征数据集的单个实例(行)。

这个实例需要进行二进制分类,这样你就会有一个额外的值 t,它是目标,可以是 -1 或 1。

感知机算法将 X1、X2、X3 和 X4 乘以一组 4 个权重。出于这个原因,我们认为感知器是一种线性算法。

然后,激活函数将应用于此乘法的结果。

这是整个过程中的方程式:

其中 a 是所谓的激活函数。

当然,输入可以是 N 维的(N 不一定是四维),这样您也可以使用 N 权重 + 1 偏差。尽管如此,纯感知器算法旨在用于二进制分类。

当然,y=a(w_1x_1+…+w_4x_4)的结果需要在-1到1之间。换句话说,归根结底,所谓的激活函数需要能够给你一个分类。

N 维输入与 N 维权重的乘积将为您提供一个数字。那么如果这个数字大于 0,你的算法会说“1”,否则会说“-1”。

这就是它的运行方式,也是它做出决定的方式。

1.2. 损失函数

我们都知道机器学习算法带有损失函数。在这种情况下,损失函数是错误分类点的加权和。

假设您有一个分类不正确的点。这意味着,例如,将您的参数与您的输入相乘,您将得到 -0.87 的最终结果。

好的,重点来了,错误分类,记得吗?因此,这意味着该点 (t=1) 的目标确实为“1”。所以这意味着如果你做这个乘法:

你实际上得到了一个数,告诉你你错了多少,你应该改变你的权重和 bias 来做更好的分类工作。

一般来说,损失函数是所有错误分类点的负和:

其中S是错误分类点的集合。

我们将开始优化这个损失函数,当然我们想要最小化。

您在上面看到的等式称为梯度下降。这意味着我们遵循损失达到最小值的方向,并按照这个方向更新参数。

由于损失函数取决于错误分类点的数量,这意味着我们将慢慢开始纠正实例,直到如果数据集是线性可分的,将不再有目标“正确”,我们的分类任务将是完美的。

2. 实现

当然,SkLearn Perceptron 是众所周知的现成实现。尽管如此,为了更好地理解它,让我们从头开始创建这个感知器。

让我们从库开始:

import matplotlib.pyplot as plt
import numpy as np
plt.style.use('ggplot')
plt.rcParams['font.family'] = 'sans-serif' 
plt.rcParams['font.serif'] = 'Ubuntu' 
plt.rcParams['font.monospace'] = 'Ubuntu Mono' 
plt.rcParams['font.size'] = 14 
plt.rcParams['axes.labelsize'] = 12 
plt.rcParams['axes.labelweight'] = 'bold' 
plt.rcParams['axes.titlesize'] = 12 
plt.rcParams['xtick.labelsize'] = 12 
plt.rcParams['ytick.labelsize'] = 12 
plt.rcParams['legend.fontsize'] = 12 
plt.rcParams['figure.titlesize'] = 12 
plt.rcParams['image.cmap'] = 'jet' 
plt.rcParams['image.interpolation'] = 'none' 
plt.rcParams['figure.figsize'] = (10, 10
                                 ) 
plt.rcParams['axes.grid']=True
plt.rcParams['lines.linewidth'] = 2 
plt.rcParams['lines.markersize'] = 8
colors = ['xkcd:pale range', 'xkcd:sea blue', 'xkcd:pale red', 'xkcd:sage green', 'xkcd:terra cotta', 'xkcd:dull purple', 'xkcd:teal', 'xkcd: goldenrod', 'xkcd:cadet blue',
'xkcd:scarlet']
bbox_props = dict(boxstyle="round,pad=0.3", fc=colors[0], alpha=.5)

让我们定义决策函数:

def step_func(z):
        return 1.0 if (z > 0) else 0.0

2.1. 线性数据

让我们使用 SkLearn 创建一个线性可分的数据集。

from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler


X, y = datasets.make_blobs(n_samples=150,n_features=2,
                           centers=2,cluster_std=3.20)
y[y==0]=-1

#Plotting

min_max_scaler = MinMaxScaler()
X = min_max_scaler.fit_transform(X)

fig = plt.figure(figsize=(10,8))
plt.plot(X[:, 0][y == -1], X[:, 1][y == -1], 'r^')
plt.plot(X[:, 0][y == 1], X[:, 1][y == 1], 'bs')
plt.xlabel("feature 1")
plt.ylabel("feature 2")
plt.title('Random Classification Data with 2 classes')

2.2. 感知器函数

使用这个函数,实际上实现了之前讲解过的所有思路:

def perceptron(X, y, lr, epochs):
    
    # X --> Inputs.
    # y --> labels/target.
    # lr --> learning rate.
    # epochs --> Number of iterations.
    
    # m-> number of training examples
    # n-> number of features 
    m, n = X.shape
    
    # Initializing parapeters(theta) to zeros.
    # +1 in n+1 for the bias term.
    theta = np.zeros((n+1,1))
    
    # Empty list to store how many examples were 
    # misclassified at every iteration.
    n_miss_list = []
    loss_list = []
    # Training.
    for epoch in range(epochs):
        
        # variable to store #misclassified.
        n_miss = 0
        
        # looping for every example.
        for idx, x_i in enumerate(X):
            
            # Insering 1 for bias, X0 = 1.
            x_i = np.insert(x_i, 0, 1).reshape(-1,1)
            
            # Calculating prediction/hypothesis.
            y_hat = step_func(np.dot(x_i.T, theta))
            if y_hat==0:
              y_hat = -1
            # Updating if the example is misclassified.
            if (np.squeeze(y_hat) - y[idx]) != 0:
                theta += lr*((y[idx] - y_hat)*x_i)

                # Incrementing by 1.
                n_miss += 1
        #Defining the loss function
        x1 = X[:,0]
        x2 = X[:,1]
        theta_array = theta
        loss_value = (theta_array[1]*x1+theta_array[2]*x2+theta_array[0])*y
        loss_value = loss_value.sum()/len(x1)
        loss_list.append(loss_value)
        # Appending number of misclassified examples
        # at every iteration.
        n_miss_list.append(n_miss)

    return theta, n_miss_list,loss_list

然后我们可以使用以下代码绘制决策边界:

def plot_decision_boundary(X, theta):
    
    # X --> Inputs
    # theta --> parameters
    
    # The Line is y=mx+c
    # So, Equate mx+c = theta0.X0 + theta1.X1 + theta2.X2
    # Solving we find m and c
    x1 = [min(X[:,0]), max(X[:,0])]
    m = -theta[1]/theta[2]
    c = -theta[0]/theta[2]
    x2 = m*x1 + c
    
    # Plotting
    fig = plt.figure(figsize=(10,8))
    plt.plot(X[:, 0][y==-1], X[:, 1][y==-1], "r^")
    plt.plot(X[:, 0][y==1], X[:, 1][y==1], "bs")
    plt.xlabel("Feature 1")
    plt.ylabel("Feature 2")
    plt.title('Perceptron Algorithm')
    plt.plot(x1, x2, 'y-')

那么让我们看看玩具数据集中发生了什么:

learning_rate , epoch = 0.005,200
theta, miss_l,loss_list= perceptron(X, y, learning_rate, epoch)
plot_decision_boundary(X, theta)

可以看出,所有的点都被很好地分类了(即使是小的红色三角形)。

让我们看看损失函数图:

def plot_training(miss_l):
  plt.figure(figsize=(12,12))
  list_array = np.arange(0,len(miss_l),1)
  plt.xlabel('Number of Epochs')
  plt.ylabel('Number of Wrong Classified Points')
  plt.plot(list_array,miss_l)
plot_training(miss_l)

这意味着数据集现在已经完全分类了。

2.3. 非线性数据

让我们考虑一个更难的非线性可分数据集。

from sklearn import datasets
X, y = datasets.make_blobs(n_samples=150,n_features=2,
                           centers=2,cluster_std=3.20)
y[y==0]=-1

#Plotting

min_max_scaler = MinMaxScaler()
X = min_max_scaler.fit_transform(X)

fig = plt.figure(figsize=(10,8))
plt.plot(X[:, 0][y == -1], X[:, 1][y == -1], 'r^')
plt.plot(X[:, 0][y == 1], X[:, 1][y == 1], 'bs')
plt.xlabel("feature 1")
plt.ylabel("feature 2")
plt.title('Random Classification Data with 2 classes')

让我们运行算法:

def plot_decision_boundary(X, theta):
    
    # X --> Inputs
    # theta --> parameters
    
    # The Line is y=mx+c
    # So, Equate mx+c = theta0.X0 + theta1.X1 + theta2.X2
    # Solving we find m and c
    x1 = [min(X[:,0]), max(X[:,0])]
    m = -theta[1]/theta[2]
    c = -theta[0]/theta[2]
    x2 = m*x1 + c
    
    # Plotting
    fig = plt.figure(figsize=(10,8))
    plt.plot(X[:, 0][y==-1], X[:, 1][y==-1], "r^")
    plt.plot(X[:, 0][y==1], X[:, 1][y==1], "bs")
    plt.xlabel("Feature 1")
    plt.ylabel("Feature 2")
    plt.title('Perceptron Algorithm')
    plt.plot(x1, x2, 'y-')
    plt.xlim(-0.1,1.1)
    plt.ylim(-0.1,1.1)
    
theta, miss_l,loss = perceptron(X, y, 0.2, 10)

plot_decision_boundary(X, theta)

theta, miss_l,loss = perceptron(X, y, 1, 20)

plot_decision_boundary(X, theta)    

好的,现在我们可能需要做一些工作才能获得最佳分类。

让我们运行不同数量的 epoch 和不同的学习率(所谓的超参数调整)以获得感知器的最佳版本:

from sklearn.linear_model import Perceptron
num_of_epochs = [10,100,500,1000]
etas = np.linspace(1e-5,1,100)
scores = []
for e in etas:
  for num in num_of_epochs:
    clf = Perceptron(eta0=e,max_iter=num)
    clf.fit(X, y)
    scores.append({'Num':num,'Eta':e.round(5),'Score':clf.score(X, y)})
    
    
import pandas as pd
import seaborn as sns
scores=pd.DataFrame(scores)
pivot = scores.pivot('Num','Eta','Score')


sns.heatmap(data=pivot)

所以这是最佳的epoch和学习率:

scores[scores.Score==scores.Score.max()]

总结

  • 感知器算法很快。其实就是一个线性乘法+阶跃函数的应用。它非常简单易用。
  • 当数据集不可线性分离时,算法不会根据损失函数收敛。这意味着该感知器旨在(完美地)仅在线性可分数据集上工作。尽管如此,我们可以对数据集应用转换,并将感知器算法应用于转换后的数据集
  • 超参数调整部分可以大大提高算法的性能。
相关文章
|
18天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
207 55
|
7天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
102 66
|
2月前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
138 67
|
2月前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
128 61
|
2月前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
117 63
|
28天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
154 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
11天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
49 20
|
4天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
9天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
40 5
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用