DDPG强化学习的PyTorch代码实现和逐步讲解

简介: 深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)是受Deep Q-Network启发的无模型、非策略深度强化算法,是基于使用策略梯度的Actor-Critic,本文将使用pytorch对其进行完整的实现和讲解

DDPG的关键组成部分是

  • Replay Buffer
  • Actor-Critic neural network
  • Exploration Noise
  • Target network
  • Soft Target Updates for Target Network

下面我们一个一个来逐步实现:

Replay Buffer

DDPG使用Replay Buffer存储通过探索环境采样的过程和奖励(Sₜ,aₜ,Rₜ,Sₜ+₁)。Replay Buffer在帮助代理加速学习以及DDPG的稳定性方面起着至关重要的作用:

  • 最小化样本之间的相关性:将过去的经验存储在 Replay Buffer 中,从而允许代理从各种经验中学习。
  • 启用离线策略学习:允许代理从重播缓冲区采样转换,而不是从当前策略采样转换。
  • 高效采样:将过去的经验存储在缓冲区中,允许代理多次从不同的经验中学习。
 classReplay_buffer():
     '''
     Code based on:
     https://github.com/openai/baselines/blob/master/baselines/deepq/replay_buffer.py
     Expects tuples of (state, next_state, action, reward, done)
     '''
     def__init__(self, max_size=capacity):
         """Create Replay buffer.
         Parameters
         ----------
         size: int
             Max number of transitions to store in the buffer. When the buffer
             overflows the old memories are dropped.
         """
         self.storage= []
         self.max_size=max_size
         self.ptr=0
 
     defpush(self, data):
         iflen(self.storage) ==self.max_size:
             self.storage[int(self.ptr)] =data
             self.ptr= (self.ptr+1) %self.max_size
         else:
             self.storage.append(data)
 
     defsample(self, batch_size):
         """Sample a batch of experiences.
         Parameters
         ----------
         batch_size: int
             How many transitions to sample.
         Returns
         -------
         state: np.array
             batch of state or observations
         action: np.array
             batch of actions executed given a state
         reward: np.array
             rewards received as results of executing action
         next_state: np.array
             next state next state or observations seen after executing action
         done: np.array
             done[i] = 1 if executing ation[i] resulted in
             the end of an episode and 0 otherwise.
         """
         ind=np.random.randint(0, len(self.storage), size=batch_size)
         state, next_state, action, reward, done= [], [], [], [], []
 
         foriinind:
             st, n_st, act, rew, dn=self.storage[i]
             state.append(np.array(st, copy=False))
             next_state.append(np.array(n_st, copy=False))
             action.append(np.array(act, copy=False))
             reward.append(np.array(rew, copy=False))
             done.append(np.array(dn, copy=False))
 
         returnnp.array(state), np.array(next_state), np.array(action), np.array(reward).reshape(-1, 1), np.array(done).reshape(-1, 1)

Actor-Critic Neural Network

这是Actor-Critic 强化学习算法的 PyTorch 实现。该代码定义了两个神经网络模型,一个 Actor 和一个 Critic。

Actor 模型的输入:环境状态;Actor 模型的输出:具有连续值的动作。

Critic 模型的输入:环境状态和动作;Critic 模型的输出:Q 值,即当前状态-动作对的预期总奖励。

 classActor(nn.Module):
     """
     The Actor model takes in a state observation as input and 
     outputs an action, which is a continuous value.
     
     It consists of four fully connected linear layers with ReLU activation functions and 
     a final output layer selects one single optimized action for the state
     """
     def__init__(self, n_states, action_dim, hidden1):
         super(Actor, self).__init__()
         self.net=nn.Sequential(
             nn.Linear(n_states, hidden1), 
             nn.ReLU(), 
             nn.Linear(hidden1, hidden1), 
             nn.ReLU(), 
             nn.Linear(hidden1, hidden1), 
             nn.ReLU(), 
             nn.Linear(hidden1, 1)
         )
         
     defforward(self, state):
         returnself.net(state)
 
 classCritic(nn.Module):
     """
     The Critic model takes in both a state observation and an action as input and 
     outputs a Q-value, which estimates the expected total reward for the current state-action pair. 
     
     It consists of four linear layers with ReLU activation functions, 
     State and action inputs are concatenated before being fed into the first linear layer. 
     
     The output layer has a single output, representing the Q-value
     """
     def__init__(self, n_states, action_dim, hidden2):
         super(Critic, self).__init__()
         self.net=nn.Sequential(
             nn.Linear(n_states+action_dim, hidden2), 
             nn.ReLU(), 
             nn.Linear(hidden2, hidden2), 
             nn.ReLU(), 
             nn.Linear(hidden2, hidden2), 
             nn.ReLU(), 
             nn.Linear(hidden2, action_dim)
         )
         
     defforward(self, state, action):
         returnself.net(torch.cat((state, action), 1))

Exploration Noise

向 Actor 选择的动作添加噪声是 DDPG 中用来鼓励探索和改进学习过程的一种技术。

可以使用高斯噪声或 Ornstein-Uhlenbeck 噪声。 高斯噪声简单且易于实现,Ornstein-Uhlenbeck 噪声会生成时间相关的噪声,可以帮助代理更有效地探索动作空间。但是与高斯噪声方法相比,Ornstein-Uhlenbeck 噪声波动更平滑且随机性更低。

 importnumpyasnp
 importrandom
 importcopy
 
 classOU_Noise(object):
     """Ornstein-Uhlenbeck process.
     code from :
     https://math.stackexchange.com/questions/1287634/implementing-ornstein-uhlenbeck-in-matlab
     The OU_Noise class has four attributes
     
         size: the size of the noise vector to be generated
         mu: the mean of the noise, set to 0 by default
         theta: the rate of mean reversion, controlling how quickly the noise returns to the mean
         sigma: the volatility of the noise, controlling the magnitude of fluctuations
     """
     def__init__(self, size, seed, mu=0., theta=0.15, sigma=0.2):
         self.mu=mu*np.ones(size)
         self.theta=theta
         self.sigma=sigma
         self.seed=random.seed(seed)
         self.reset()
 
     defreset(self):
         """Reset the internal state (= noise) to mean (mu)."""
         self.state=copy.copy(self.mu)
 
     defsample(self):
         """Update internal state and return it as a noise sample.
         This method uses the current state of the noise and generates the next sample
         """
         dx=self.theta* (self.mu-self.state) +self.sigma*np.array([np.random.normal() for_inrange(len(self.state))])
         self.state+=dx
         returnself.state

要在DDPG中使用高斯噪声,可以直接将高斯噪声添加到代理的动作选择过程中。

DDPG

DDPG (Deep Deterministic Policy Gradient)采用两组Actor-Critic神经网络进行函数逼近。在DDPG中,目标网络是Actor-Critic ,它目标网络具有与Actor-Critic网络相同的结构和参数化。

在训练期时,代理使用其 Actor-Critic 网络与环境交互,并将经验元组(Sₜ、Aₜ、Rₜ、Sₜ+₁)存储在Replay Buffer中。 然后代理从 Replay Buffer 中采样并使用数据更新 Actor-Critic 网络。 DDPG 算法不是通过直接从 Actor-Critic 网络复制来更新目标网络权重,而是通过称为软目标更新的过程缓慢更新目标网络权重。

软目标的更新是从Actor-Critic网络传输到目标网络的称为目标更新率(τ)的权重的一小部分。

软目标的更新公式如下:

通过使用软目标技术,可以大大提高学习的稳定性。

 #Set Hyperparameters
 # Hyperparameters adapted for performance from
 capacity=1000000
 batch_size=64
 update_iteration=200
 tau=0.001# tau for soft updating
 gamma=0.99# discount factor
 directory='./'
 hidden1=20# hidden layer for actor
 hidden2=64.#hiiden laye for critic
 
 classDDPG(object):
     def__init__(self, state_dim, action_dim):
         """
         Initializes the DDPG agent. 
         Takes three arguments:
                state_dim which is the dimensionality of the state space, 
                action_dim which is the dimensionality of the action space, and 
                max_action which is the maximum value an action can take. 
         
         Creates a replay buffer, an actor-critic  networks and their corresponding target networks. 
         It also initializes the optimizer for both actor and critic networks alog with 
         counters to track the number of training iterations.
         """
         self.replay_buffer=Replay_buffer()
         
         self.actor=Actor(state_dim, action_dim, hidden1).to(device)
         self.actor_target=Actor(state_dim, action_dim,  hidden1).to(device)
         self.actor_target.load_state_dict(self.actor.state_dict())
         self.actor_optimizer=optim.Adam(self.actor.parameters(), lr=3e-3)
 
         self.critic=Critic(state_dim, action_dim,  hidden2).to(device)
         self.critic_target=Critic(state_dim, action_dim,  hidden2).to(device)
         self.critic_target.load_state_dict(self.critic.state_dict())
         self.critic_optimizer=optim.Adam(self.critic.parameters(), lr=2e-2)
         # learning rate
 
         
 
         self.num_critic_update_iteration=0
         self.num_actor_update_iteration=0
         self.num_training=0
 
     defselect_action(self, state):
         """
         takes the current state as input and returns an action to take in that state. 
         It uses the actor network to map the state to an action.
         """
         state=torch.FloatTensor(state.reshape(1, -1)).to(device)
         returnself.actor(state).cpu().data.numpy().flatten()
 
 
     defupdate(self):
         """
         updates the actor and critic networks using a batch of samples from the replay buffer. 
         For each sample in the batch, it computes the target Q value using the target critic network and the target actor network. 
         It then computes the current Q value 
         using the critic network and the action taken by the actor network. 
         
         It computes the critic loss as the mean squared error between the target Q value and the current Q value, and 
         updates the critic network using gradient descent. 
         
         It then computes the actor loss as the negative mean Q value using the critic network and the actor network, and 
         updates the actor network using gradient ascent. 
         
         Finally, it updates the target networks using 
         soft updates, where a small fraction of the actor and critic network weights are transferred to their target counterparts. 
         This process is repeated for a fixed number of iterations.
         """
 
         foritinrange(update_iteration):
             # For each Sample in replay buffer batch
             state, next_state, action, reward, done=self.replay_buffer.sample(batch_size)
             state=torch.FloatTensor(state).to(device)
             action=torch.FloatTensor(action).to(device)
             next_state=torch.FloatTensor(next_state).to(device)
             done=torch.FloatTensor(1-done).to(device)
             reward=torch.FloatTensor(reward).to(device)
 
             # Compute the target Q value
             target_Q=self.critic_target(next_state, self.actor_target(next_state))
             target_Q=reward+ (done*gamma*target_Q).detach()
 
             # Get current Q estimate
             current_Q=self.critic(state, action)
 
             # Compute critic loss
             critic_loss=F.mse_loss(current_Q, target_Q)
             
             # Optimize the critic
             self.critic_optimizer.zero_grad()
             critic_loss.backward()
             self.critic_optimizer.step()
 
             # Compute actor loss as the negative mean Q value using the critic network and the actor network
             actor_loss=-self.critic(state, self.actor(state)).mean()
 
             # Optimize the actor
             self.actor_optimizer.zero_grad()
             actor_loss.backward()
             self.actor_optimizer.step()
 
             
             """
             Update the frozen target models using 
             soft updates, where 
             tau,a small fraction of the actor and critic network weights are transferred to their target counterparts. 
             """
             forparam, target_paraminzip(self.critic.parameters(), self.critic_target.parameters()):
                 target_param.data.copy_(tau*param.data+ (1-tau) *target_param.data)
 
             forparam, target_paraminzip(self.actor.parameters(), self.actor_target.parameters()):
                 target_param.data.copy_(tau*param.data+ (1-tau) *target_param.data)
             
            
             self.num_actor_update_iteration+=1
             self.num_critic_update_iteration+=1
     defsave(self):
         """
         Saves the state dictionaries of the actor and critic networks to files
         """
         torch.save(self.actor.state_dict(), directory+'actor.pth')
         torch.save(self.critic.state_dict(), directory+'critic.pth')
 
     defload(self):
         """
         Loads the state dictionaries of the actor and critic networks to files
         """
         self.actor.load_state_dict(torch.load(directory+'actor.pth'))
         self.critic.load_state_dict(torch.load(directory+'critic.pth'))

训练DDPG

这里我们使用 OpenAI Gym 的“MountainCarContinuous-v0”来训练我们的DDPG RL 模型,这里的环境提供连续的行动和观察空间,目标是尽快让小车到达山顶。

下面定义算法的各种参数,例如最大训练次数、探索噪声和记录间隔等等。 使用固定的随机种子可以使得过程能够回溯。

 importgym
 
 # create the environment
 env_name='MountainCarContinuous-v0'
 env=gym.make(env_name)
 device='cuda'iftorch.cuda.is_available() else'cpu'
 
 # Define different parameters for training the agent
 max_episode=100
 max_time_steps=5000
 ep_r=0
 total_step=0
 score_hist=[]
 # for rensering the environmnet
 render=True
 render_interval=10
 # for reproducibility
 env.seed(0)
 torch.manual_seed(0)
 np.random.seed(0)
 #Environment action ans states
 state_dim=env.observation_space.shape[0]
 action_dim=env.action_space.shape[0]
 max_action=float(env.action_space.high[0])
 min_Val=torch.tensor(1e-7).float().to(device) 
 
 # Exploration Noise
 exploration_noise=0.1
 exploration_noise=0.1*max_action

创建DDPG代理类的实例,以训练代理达到指定的次数。在每轮结束时调用代理的update()方法来更新参数,并且在每十轮之后使用save()方法将代理的参数保存到一个文件中。

 # Create a DDPG instance
 agent=DDPG(state_dim, action_dim)
 
 # Train the agent for max_episodes
 foriinrange(max_episode):
     total_reward=0
     step=0
     state=env.reset()
     for  tinrange(max_time_steps):
         action=agent.select_action(state)
         # Add Gaussian noise to actions for exploration
         action= (action+np.random.normal(0, 1, size=action_dim)).clip(-max_action, max_action)
         #action += ou_noise.sample()
         next_state, reward, done, info=env.step(action)
         total_reward+=reward
         ifrenderandi>=render_interval : env.render()
         agent.replay_buffer.push((state, next_state, action, reward, np.float(done)))
         state=next_state
         ifdone:
             break
         step+=1
         
     score_hist.append(total_reward)
     total_step+=step+1
     print("Episode: \t{}  Total Reward: \t{:0.2f}".format( i, total_reward))
     agent.update()
     ifi%10==0:
         agent.save()
 env.close()

测试DDPG

 test_iteration=100
   
 foriinrange(test_iteration):
     state=env.reset()
     fortincount():
         action=agent.select_action(state)
         next_state, reward, done, info=env.step(np.float32(action))
         ep_r+=reward
         print(reward)
         env.render()
         ifdone: 
             print("reward{}".format(reward))
             print("Episode \t{}, the episode reward is \t{:0.2f}".format(i, ep_r))
             ep_r=0
             env.render()
             break
         state=next_state

我们使用下面的参数让模型收敛:

  • 从标准正态分布中采样噪声,而不是随机采样。
  • 将polyak常数(tau)从0.99更改为0.001
  • 修改Critic 网络的隐藏层大小为[64,64]。在Critic 网络的第二层之后删除了ReLU激活。改成(Linear, ReLU, Linear, Linear)。
  • 最大缓冲区大小更改为1000000
  • 将batch_size的大小从128更改为64

训练了75轮之后的效果如下:

总结

DDPG算法是一种受deep Q-Network (DQN)算法启发的无模型off-policy Actor-Critic算法。它结合了策略梯度方法和Q-learning的优点来学习连续动作空间的确定性策略。

与DQN类似,它使用重播缓冲区存储过去的经验和目标网络,用于训练网络,从而提高了训练过程的稳定性。

DDPG算法需要仔细的超参数调优以获得最佳性能。超参数包括学习率、批大小、目标网络更新速率和探测噪声参数。超参数的微小变化会对算法的性能产生重大影响。

上面的参数来自:

https://avoid.overfit.cn/post/9951ac196ec84629968ce7168215e461

作者:Renu Khandelwal

目录
相关文章
|
8月前
|
机器学习/深度学习 关系型数据库 MySQL
大模型中常用的注意力机制GQA详解以及Pytorch代码实现
GQA是一种结合MQA和MHA优点的注意力机制,旨在保持MQA的速度并提供MHA的精度。它将查询头分成组,每组共享键和值。通过Pytorch和einops库,可以简洁实现这一概念。GQA在保持高效性的同时接近MHA的性能,是高负载系统优化的有力工具。相关论文和非官方Pytorch实现可进一步探究。
970 4
|
13天前
|
机器学习/深度学习 存储 数据管理
面向强化学习的状态空间建模:RSSM的介绍和PyTorch实现
循环状态空间模型(Recurrent State Space Models, RSSM)由 Danijar Hafer 等人提出,是现代基于模型的强化学习(MBRL)中的关键组件。RSSM 旨在构建可靠的环境动态预测模型,使智能体能够模拟未来轨迹并进行前瞻性规划。本文介绍了如何用 PyTorch 实现 RSSM,包括环境配置、模型架构(编码器、动态模型、解码器和奖励模型)、训练系统设计(经验回放缓冲区和智能体)及训练器实现。通过具体案例展示了在 CarRacing 环境中的应用,详细说明了数据收集、训练过程和实验结果。
51 13
面向强化学习的状态空间建模:RSSM的介绍和PyTorch实现
|
2月前
|
存储 物联网 PyTorch
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
**Torchtune**是由PyTorch团队开发的一个专门用于LLM微调的库。它旨在简化LLM的微调流程,提供了一系列高级API和预置的最佳实践
234 59
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
|
18天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
74 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
CNN中的注意力机制综合指南:从理论到Pytorch代码实现
注意力机制已成为深度学习模型的关键组件,尤其在卷积神经网络(CNN)中发挥了重要作用。通过使模型关注输入数据中最相关的部分,注意力机制显著提升了CNN在图像分类、目标检测和语义分割等任务中的表现。本文将详细介绍CNN中的注意力机制,包括其基本概念、不同类型(如通道注意力、空间注意力和混合注意力)以及实际实现方法。此外,还将探讨注意力机制在多个计算机视觉任务中的应用效果及其面临的挑战。无论是图像分类还是医学图像分析,注意力机制都能显著提升模型性能,并在不断发展的深度学习领域中扮演重要角色。
164 10
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
本文介绍了几种常用的计算机视觉注意力机制及其PyTorch实现,包括SENet、CBAM、BAM、ECA-Net、SA-Net、Polarized Self-Attention、Spatial Group-wise Enhance和Coordinate Attention等,每种方法都附有详细的网络结构说明和实验结果分析。通过这些注意力机制的应用,可以有效提升模型在目标检测任务上的性能。此外,作者还提供了实验数据集的基本情况及baseline模型的选择与实验结果,方便读者理解和复现。
170 0
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
|
5月前
|
机器学习/深度学习 存储 算法
强化学习实战:基于 PyTorch 的环境搭建与算法实现
【8月更文第29天】强化学习是机器学习的一个重要分支,它让智能体通过与环境交互来学习策略,以最大化长期奖励。本文将介绍如何使用PyTorch实现两种经典的强化学习算法——Deep Q-Network (DQN) 和 Actor-Critic Algorithm with Asynchronous Advantage (A3C)。我们将从环境搭建开始,逐步实现算法的核心部分,并给出完整的代码示例。
432 1
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。