m在LTE-A系统载波聚合下的资源分配算法的matlab仿真

简介: m在LTE-A系统载波聚合下的资源分配算法的matlab仿真

1.算法描述

    载波聚合即CA,是LTE-A中的关键技术。是为满足用户峰值速率和系统容量提升的要求,增加系统传输带宽的技术,通过CA技术,用户最高上网速率可提升到300Mbps,带来极速上网体验。载波聚合是LTE-A中的关键技术。为了满足单用户峰值速率和系统容量提升的要求,一种最直接的办法就是增加系统传输带宽。因此LTE-Advanced系统引入一项增加传输带宽的技术,也就是CA。CA技术可以将2~5个LTE成员载波聚合在一起,实现最大100MHz的传输带宽。有效提高了上下行传输速率。终端根据自己的能力大小决定最多可以同时利用几个载波进行上下行传输。CA功能可以支持连续或非连续载波聚合,每个载波最大可以使用的资源是110个RB。每个用户在每个载波上使用独立的HARQ实体,每个传输块只能映射到特定的一个载波上。

  LTE采用由eNB构成的单层结构,这种结构有利于简化网络和减小延迟,实现低时延、低复杂度和低成本的要求。与3G接入网相比,LTE减少了RNC节点。名义上LTE是对3G的演进,但事实上它对3GPP的整个体系架构作了革命性的改变,逐步趋近于典型的IP宽带网络结构。

  LTE的架构也叫E-UTRAN架构,如图3所示。E-UTRAN主要由eNB构成。同UTRAN网络相比,eNB不仅具有NodeB的功能,还能完成RNC的大部分功能,包括物理层、MAC层、RRC、调度、接入控制、承载控制、接入移动性管理和Inter-cellRRM等。

为了满足LTE-A下行峰速1 Gbps,上行峰速500 Mbps的要求,需要提供最大100 MHz的传输带宽,但由于这么大带宽的连续频谱的稀缺,LTE-A提出了载波聚合的解决方案。

载波聚合(Carrier Aggregation, CA)是将2个或更多的载波单元(Component Carrier, CC)聚合在一起以支持更大的传输带宽(最大为100MHz)。

每个CC的最大带宽为20 MHz。

为了高效地利用零碎的频谱,CA支持不同CC之间的聚合(如图1)

· 相同或不同带宽的CCs

· 同一频带内,邻接或非邻接的CCs

· 不同频带内的CCs

image.png

  从基带(baseband)实现角度来看,这几种情况是没有区别的。这主要影响RF实现的复杂性。

  CA的另一个动力来自与对异构网络(heterogeneous network)的支持。后续会在跨承载调度(cross-carrier scheduling)中对异构网络进行介绍。

2.仿真效果预览
matlab2022a仿真结果如下:

image.png
image.png
image.png

3.MATLAB核心程序

    i
    PF_times = 100;%m为调度次数
    G        = Nums(i);%为UE个数
    CC       = 3; %个数
    T        = Twind;
    Rbs      = zeros(G,CC,PF_times);   %矩阵s为每次调度RB所分配的UE
    Rates    = zeros(G,G);            %整个调度过程每个UE所获得的速率
    Avg_rate = ones(1,G,PF_times+1);  %每个UE所获得的平均速率
    Rand_rate= [];
    Sum_rate = [];
 
    %根据用户在CC上的路径损耗进行分组
    %我们建设CC坐标为,用户坐标随时产生
    XY1      = [100,200];
    XY2      = [300,100];
    XY3      = [200,400];
    XY       = 1000*rand(2,G);
    SET      = [];
    %定义权重因子
    L        = CC;
    for j=1:G
        dist1 = sqrt((XY(1,j)-XY1(1))^2 + (XY(2,j)-XY1(2))^2); 
        dist2 = sqrt((XY(1,j)-XY2(1))^2 + (XY(2,j)-XY2(2))^2);
        dist3 = sqrt((XY(1,j)-XY3(1))^2 + (XY(2,j)-XY3(2))^2);
        dist  = [dist1,dist2,dist3];
        %不同载波频率衰减不一样
        PL1(j)   = 58.83+37.6*log(10*dist1/1e3) + 21*log(10*f1);
        PL2(j)   = 58.83+37.6*log(10*dist2/1e3) + 21*log(10*f2);
        PL3(j)   = 58.83+37.6*log(10*dist3/1e3) + 21*log(10*f3);
        [V,I]    = min([PL1(j),PL2(j),PL3(j)]);
        SET(j)   = I;%分组号
        Wk(j)    = L/G*dist(I)/Avg_rate(1,j,end);
        distt(j) = min(dist);
    end
    Wk = Wk/max(Wk);
    %距离较大的定义为郊区
    [VV,II] = sort(distt);
    Ijiq    = II(round((1-ker)*G):G);
    Izx     = II(1:round((1-ker)*G)-1);
    
    for n=1:PF_times;  %调度次数
        rng(n);
        %初始化alpha
        alpha            = zeros(1,G);%侵略因子
        %生成随机速率信息
        Rand_rate(:,:,n) = randint(G,CC,[0 500]);  
        %pf调度
        %每个RB开始分配
        for jq = 1:CC;  
            t  = 1;
            if jq == 1;PL=PL1;end;
            if jq == 2;PL=PL2;end;
            if jq == 3;PL=PL3;end;
            for jG = 2:G; 
                if Rand_rate(jG,jq,n)/Avg_rate(1,jG,n)>Rand_rate(t,jq,n)/Avg_rate(1,t,n) & PL>=300+50*rand;
                   t = jG;
                end
            end
            Rbs(t,jq,n) = G*rand;
        end 
        %获得的速率
        Sum_rate(:,:,n) = Rbs(:,:,n)*Rand_rate(:,:,n)';   
        %整个调度过程每个UE所获得的速率
        Rates(:,:)  = Sum_rate(:,:,n)+Rates(:,:); 
        %更新平均速率
        for k2=1:G;              
            if rand>0.2%得到服务
               Avg_rate(1,k2,n+1)=(1-1/T).*Avg_rate(1,k2,n); 
            else
               Avg_rate(1,k2,n+1)=(1-1/T).*Avg_rate(1,k2,n)+(1/T).*Sum_rate(k2,k2,n);
            end
        end
    end
    Rates_=Wk*Rates;
    speed1(i) = sum(sum(Rates_(:,Ijiq)))/1e6;
    speed2(i) = sum(sum(Rates_(:,Izx)))/1e6;
    speed(i)  = speed1(i)+speed2(i);
end
相关文章
|
10天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
141 55
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
102 80
|
20天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
110 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
7天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
35 3
|
6天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
14天前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
14天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
19天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。